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One link between the theory of quasicrystals and the theory of nonlinear 
dynamics is provided by the study of so-called trace maps. A subclass of them 
are mappings on a one-parameter family of 2D surfaces that foliate R 3 (and also 
C3). They are derived from transfer matrix approaches to properties of ID 
quasicrystals. In this article, we consider various dynamical properties of trace 
maps. We first discuss the Fibonacci trace map and give new results concerning 
boundedness of orbits on certain subfamilies of its invariant 2D surfaces. We 
highlight a particular surface where the motion is integrable and semiconjugate 
to an Anosov system (i.e., the mapping acts as a pseudo-Anosov map). We 
identify properties of symmetry and reversibility (time-reversal symmetry) in the 
Fibonacei trace map dynamics and discuss the consequences for the structure of 
periodic orbits. We show that a conservative period-doubling sequence can be 
identified when moving through the one-parameter family of 2D surfaces. By 
using generator trace maps, in terms of which all trace maps obtained from 
invertible two-letter substitution rules can be expressed, we show that many 
features of the Fibonacci trace map hold in general. The role of the Fricke 
character ](x, y, z) = x 2 + y2 + z z _  2xyz - I, its symmetry group, and rever- 
sibility for the Nielsen trace maps are described algebraically. Finally, we outline 
possible higher-dimensional generalizations. 
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1. I N T R O D U C T I O N  

There has been a growing interest in quasiperiodic structures and 
phenomena. ~J Likewise, dynamical systems are an area of recent rapid 
development. These two topics have been linked via a transfer matrix 
approach to the study of quasiperiodic systems, which leads to the deriva- 
tion of three-dimensional (3D) mappings called trace maps. tz'3~ A large 
class of these trace maps, to be considered here, possesses one integral of 
motion and consequently these trace maps induce motion on the foliation 
of R 3 by the family of 2D level sets of the integral. In this article, we study 
the dynamics of such trace maps, particularly with regard to their periodic 
orbits, and identify various features and symmetries common to a large 
subset of such mappings. 

The results of refs. 4-6 place the construction of trace maps on a firm 
mathematical footing. In the physics literature, however, trace maps first 
occurred in studies of systems with spatial, and later temporal, 
quasiperiodic structure described by the Fibonacci sequenceJ z.xT~ 

In the category of spatial structure lies the study of 1D Schr6dinger 
operators (or tight-binding approximations thereof) on Fibonacci or 
similar chains. Here, the arrangements of potentials follow the chain. The 
interest is then to determine spectrum and wave functions of such 
operators. Also, classical as well as quantum spin systems like the lsing 
model are interesting systems on such aperiodic structures. The category of 
temporal structure includes the example of a single spin in a time-depen- 
dent magnetic field B(t), or, more generally, any (nonperiodically) kicked 
two-level system (cf. also ref. 8 for a survey). 

The above models can be investigated with a transfer matrix approach 
which introduces dynamical systems theory into the problem. The cell 
structure allows the use of recursively defined transfer matrices {M,,} 
which act, say, over the f,, (nth Fibonacci number) sites of the nth 
Fibonacci approximant according to 

M , + t = M , M , , _ I  (1) 

The matrix recurrence (1) is a renormalization scheme, relating the transfer 
matrices over successively longer approximants to the infinite chain (recall 
that the Fibonacci numbers f,, diverge like f,, .-~ C, where r is the golden 
mean). If one is interested in spectral properties only, much physical 
information can be obtained from the implication of (1) on the traces 
of the transfer matrices. They obey a decoupled recurrence relation 
themselves--which is the origin of trace maps. In the Fibonacci case, this 
is a third-order difference equation which can equivalently be regarded as 
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a mapping of 3D space. Various dynamical features of this mapping have 
now been studied and related back to physical implications for the 
quasiperiodic phenomena. More recently, much work has been devoted to 
trace maps obtained from generalizations of the transfer matrix recurrence 
(!). Many similarities in the results have emerged, simultaneously being 
linked to the underlying algebraic structure and to certain properties of the 
corresponding dynamical system. 

From a dynamical point of view, trace maps are interesting for various 
reasons (compare also ref. 9). First, they can be derived as discrete dynami- 
cal systems from a continuous one without any approximation--they are 
not idealized or approximate discretizations of a continuous dynamical 
system. (~~ Second, the 3D trace maps considered here possess an invariant 
quantity, which means that their motion is confined to the 2D level sets of 
this invariant quantity. (5' ' ') On one of these (compact) level sets, the action 
of the mapping is related to a hyperbolic torai automorphism, and thus to 
an Anosov system. Motion on nearby level sets can be studied to see the 
approach to the chaotic dynamics on this particular surface. Third, as will 
be shown here, many trace maps provide nice models of reversible dynami- 
cal systems on 2D manifolds that are firmly rooted in a physical problem 
(reversible dynamical systems are those with a generalized time-reversal 
symmetry~12)). Note that reversibility is a much stronger property than just 
(time) invertibility of a dynamical system. 

On the other hand, common features are often the result of a 
systematic algebraic structure, and trace maps are no exception. In fact, 
their reformulation by means of two-letter substitution rules provides the 
right basis to exploit this. It will turn out that Nieisen's work on free 
groups and their automorphisms is central here,(13) while Nielsen's work on 
manifolds 114) shows up in the dynamical aspects--all together a somewhat 
surprising connection. 

The structure of this paper is as follows. In Section 2, we set up nota- 
tion and some preliminaries on substitution rules, in particular invertible 
ones, and their trace maps. In Section 3, we present the well-known 
Fibonacci trace map as our first example and discuss its dynamical struc- 
ture in some detail. In Section 4, we briefly describe the most important 
properties of reversibility in our context and discuss a period-doubling 
bifurcation cascade found for the Fibonacci trace map. 

Section 5 deals with a family of generalizations of the Fibonacci trace 
map that show sIructuraily similar behavior, including the existence of an 
invariant and reversibility. In Section 6 we present a more unified picture 
to explain the prevalence of these properties using a generator approach to 
volume-preserving trace maps. In particular, the role of the invariant 
becomes obvious and reversibility also follows for a significant subclass of 
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mappings. Our main results are summarized in Propositions 17-23 of this 
Section. 

Finally, in Section 7, we turn to a particular class of generalizations in 
higher dimensions, i.e., to n-parameter families of diffeomorphisms of ~" or 
C n that are reversible and possess an invariant (though they are, in general, 
not trace maps). We briefly describe this class of mappings, which is 
followed by some concluding remarks in Section 8, while the Appendix 
recalls some properties of dynamical systems on 2D manifolds reformulated 
for our present needs. 

2. PREL IMINARIES:  S U B S T I T U T I O N  RULES,  S U B S T I T U T I O N  
M A T R I C E S ,  T R A C E  M A P S  

This section provides a brief summary, for the unfamiliar reader, of the 
concepts of substitution rules and substitution matrices, and discusses how 
to derive the associated trace maps. 

Part of the study of quasiperiodic structures has been devoted to t D 
nonperiodic tilings that possess a deflation/inflation symmetry (see refs. 1 
and 15 and references therein). Those with two tiles, a and b, can be built 
from a two-letter replacement or substitution rule of the form 

a --* p(a) = wu(a, b) 
P: b --+ p(b) = wb(a, b) (2) 

In (2), w,(a, b) and wb(a, b) are words or strings built from the two-letter 
alphabet {a, b}, where a, b then stand for the two different tiles. However, 
for many purposes, it is advantageous to include the inverses {a-1, b - i }  
formally defined by a - l a  = aa-J = e, where e is the empty word and multi- 
plication of words is defined by concatenationJ 16~ That is, w~(a, b) and 
wh(a, b) take the form x l x 2 . . . x r ,  where xi is a, b, a - l ,  or b -1. The set of 
all finite words then constitutes the free group ~ generated by the two- 
letter alphabet {a, b}--more will be said about this in Section 6 below. In 
order to be able to calculate the image p(w) of a given word w under the 
rule p, one should only consider p's that are homomorphisms on the group 
of all words, i.e., 

p(wl w2) = p(wl) p(w2) (3) 

for any two words w~ and w 2, where again the 'products' on the right-hand 
side correspond to word juxtaposition. Because of the property (3), p(w) is 
completely described by the images p(a) and p(b), and therefore (2) is 
sufficient to specify p. 
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If p and a are two substitution rules, then their product trp is defined, 
following ref. 17, to be the substitution rule obtained by applying a 
followed by p, 

ap := poa (4) 

More explicitly, if p is defined by (2) and a by a : a ~ a ( a ) =  Wo(a, b), 
b ~ a ( b ) = W b ( a , b ) ,  then ap is given by the rule a-- ,poa(a)= 
Wu(w,(a, b), wb(a, b)), b ~ poa(b)= Wb(wa(a, b), wb(a, b)). A substitution 
rule p is called invertible if there exists another substitution rule, denoted 
p-~, such that 

pp- l  = p - l p  =id (5) 

where id: a---, a, b ~ b. The invertible substitution rules form a group, ~2, 
known as the automorphism group of the free group ~.~t3~ 

Using composition, we can repeatedly apply the same rule p to a given 
word Wo. This leads to a sequence of new words w~ = p(wo), w2 = pZ(wo), 
w3=p3(Wo), etc. For example, applying the rule twice to wo=a gives 
a --* p(a) = w.(a, b) ~ pZ(a) = w~(w.(a, b), wb(a, b)). 

One (abbreviated) way to encode the statistical properties of a 
substitution rule p is via the substitution matrix Rp defined by 

R p = (  # ~(w") # b(W~)'] (6) 
#.(wb)  #b(Wb)] 

In (6), #~(w,) is the number of a's in wo(a, b), (adding +1 for every 
occurrence of a, and - 1 for every occurrence of a -  l) and # h(wo) is the 
number of b's etc. See refs. 13 and 10 for details of the underlying 
Abelianization process. Evidently Rp and its powers are integer matrices. If 
the integer row vector ( #  ~(Wo), # b(Wo)) gives the number of a's and b's in 
a word w o, then multiplication of this vector from the right byRd, gives a 
new row vector (#o(w,) ,  # b(w,)) whose components are the numbers of 
a's and b's in w, = p"(Wo). If the integer matrix Rp is hyperbolic with real 
eigenvalues 2 and/~ satisfying 12[ > 1 > I#[, then the relative frequencies of 
the two letters as n ~ oo are given by the entries in the left eigenvector of 
Rp corresponding to 2. Hence the ratio of b's to a's in the infinite word is 
equal to 

( 2 -  #o(w. ) ) /#o(w~)=  #~(w.) / ( ,~-  #b(wb)) 

This is of course a special case of the Perron-Frobenius eigenvalue and 
eigenvector of Rp if the entries are nonnegative only. 
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One canonical example of a 1D quasiperiodic structure that is 
obtained from a two-letter substitution rule is the famous 1D Fibonacci 
chain. The rule in this case is 

a--*b  
PI : b ~ ba (7) 

The first few applications of p, with the initial condition Wo = a produce 
the word sequence pa(a) = b, p~(a) = ba, p~(a) = bab, p4(a)  = babba. Calling 
S .  = p'[(a) the nth Fibonacci approximant, the Fibonacci chain is defined 
as the infinite limit of the string sequence S.,  where we disregard subtleties 
like infinite versus half-infinite words or isomorphism concepts for now. 
By construction, S,, contains f, ,_j {b}'s, f,, 2 {a}'s, and hence f .  total 
symbols, where fn is the nth Fibonacci number (defined by f o = f ~  = 1 
and f . + 2 = f . + , + f . ) .  The ratio of the number of {b}'s to the number 
of {a}'s in the Fibonacci chain is consequently equal to 
r = l i m  . . . . .  ( f , , _ , / f . _ z ) = ( l + x / ~ ) / 2 ,  the famous golden mean. The fact 
that this number is irrational indicates that the Fibonacci chain is 
necessarily aperiodic, since a periodic 2-symbol chain is built up by 
repeating a finite-length unit cell and so has a rational proportion of 
constituent elements. Another way to see the nonperiodicity of the infinite 
Fibonacci chain is via its substitution matrix 

(0 :) ,8, 
The matrix RI has eigenvalues 2 = ~ and ~ = - l / z ,  so that from above the 
ratio of b's to a's is again ~ = (~.- # ~ ( w ~ ) ) / #  ~(w~). Despite the fact that 
this ratio is irrational, the way that the Fibonacci chain is constructed is 
far from random, and it can be considered to be successively better 
approximated by a sequence of periodic chains with unit cell given by the 
Fibonacci approximants S,,. 

Note that the substitution matrix does not give a complete description 
of a substitution rule, because different rules can have the same substitution 
matrix, so that some information is lost in this description, e.g., the rule 
a ~ b, a ~ ab leads to the same matrix R as (8). In this simple example, we 
would obtain an equivalent chain (which is in the same local isomorphism 
class ~lsl), but that is not generally true for other substitution matrices. ~9"s~ 

To derive a trace map from a two-letter substitution rule p, we identify 
the letters {a, b} with 2 x2  matrices {A, B} in Sl(2, C). The substitution 
rule (2) then induces a matrix substitution rule where wA(A,  B)  and 
wB(A, B) now represent products of strings of the two-component matrices. 
It is well known Is'6''7~ that for any such matrix substitution rule, there 
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always exists a unique polynomial mapping F o : C 3 ~ C 3 with integer coef- 
ficients that expresses the coordinate triple (tr(p(A)), tr(p(B)), tr(p(AB))) 
in terms of (tr(A), tr(B), tr(AB)). Repeated composition of a trace map 
allows, for instance, the trace of the matrix word tr(p"(A)) to be expressed 
in terms of tr(A), tr(B), and tr(AB). 

It can be shown t~7~ that the trace map and substitution matrix of a 
product (4) of two substitution rules are given by 

F.p=F~oFo, R~p=R..Rp (9) 

where o is functional composition and .  is matrix multiplication. This shows 
that the mappings from the substitution rules to the substitution matrices, 
and from the substitution rules to the trace maps, are homomorphisms, 
a point we will return to in Section 6. In this article, we will focus our 
attention on invertible substitution rules and their trace maps. 

3. THE FIBONACCI  TRACE MAP: INTEGRAL OF M O T I O N  
AND D Y N A M I C S  ON SOME LEVEL SETS 

In this Section, we begin a discussion of the dynamics of the well- 
known Fibonacci trace map and its associated, equally well-known, 
integral of motionJ 5'~L2"31 We identify some of the level sets of the integral 
where the motion is solvable or essentially describable. 

As discussed in the Introduction, we are interested in an interpretation 
of (7) as a renormalization approach to certain physical systems that live 
on such a chain---either in space or in time, and this is usually described 
by some sort of transfer, formulated in terms of matrices. Therefore, we 
rewrite P l of (7) as a matrix recursion after making the identifications with 
unimodular 2 x 2 matrices, i.e., p'~(a) ~ A,, p'](b) ~ B,,, with A, ~ Sl(2, C), 
etc. We obtain 

A n + 1 ~ B n  

B,,+I=B,.A. (10) 

C,.+I= A , . . tB , . . I=  B~A. 

where we have introduced C. = A,.Bn for systematic reasons (cf. the general 
result of ref. 6 referred to above), although it is not necessary for this 
example. 

For a 2 x 2 matrix T with det(T) = 1, we have T 2 = t r (T) .  T -  ~ from 
the Cayley-Hamilton theorem. As a consequence, the traces 

x .  = �89 y .  = �89 z . =  �89 (11) 
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decouple from the matrix iteration (10), i.e., we can write x ,+  ~, y ,+  ~, and 
z,, + ~ as functions of x , ,  y , ,  and z, only. This decoupling gives rise to a 3D 
dynamical system 

Fl: ~ Y (12) 

2 y : -  x 

The mapping F~ is the Fibonacci trace map. (2'3) It is a diffeomorphism of 
C 3 and possesses an integral of motion 

i(x, y, z) = xZ + y Z + z 2 - 2 x y z -  1 (13) 

in the sense that / ( F i x ) = / ( x )  for all x =  (x, y, z )~C  3. This can easily be 
checked by direct substitution. The (unnecessary) constant term in (13) is 
kept for historical reasons as well as compatibility with other publications. 
f in (13) is a simple example of a so-called "Fricke character. ''(4'2~ H)We 
will frequently use this term or the term "Fricke invariant" (although it 
may in fact be a misnomer, as pointed out in ref. 1 1, because of prior work 
by Vogt(22)). Motivated by the various physical applications mentioned in 
the Introduction, we will now investigate the mapping F~ mainly as a 
diffeomorphism of N3, although it certainly has interesting properties as a 
complex mapping. 

Possession of an integral or invariant by a 3D mapping has important 
dynamical implications because it confines the motion to its family of 2D 
level sets. Thus one obtains an induced one-parameter family of mappings 
over the 2D surfaces, the parameter being the value of the invariant. Let us 
briefly describe the invariant level sets of FI given by 

~#~, : = { ( x , y , z ) 6 R 3 l I ( x , y , z ) = p } = J U ~ i u ~  ~ (14) 

The last part of Eq. (14) indicates the division of Jr', into its compact (c) 
and noncompact (nc) parts, a distinction that is useful for - 1  ~</2 ~< 0. The 
2D surfaces Jr' u have tetrahedral symmetry, i.e., they are invariant under 
any permutation of the three coordinates and under any pairwise sign 
change like (x, y, z) ~ ( - x ,  - y ,  z). For g < 0, .//g ~c consists of four discon- 
nected noncompact cones going to infinity. They are confined to four of the 
eight octants of R 3, and are external to the cube (or box) ~ bounded by 
the planes {x=  _+_1 }, {y = _+1 }, and {z = _+1 }, i.e., 

~ : =  {(x,y ,z)  l Ixl<~l, lyl<~l, lzl<~l} (15) 
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That is, for/~ < 0, we can introduce a notation for the cones and write 

t i c  ~t'u := ~.) _u~(~'~Y'~:) 
(16) 

~(~x.~,,~:). = ,~/~ n {xyz >/1 I sgn(x) = e,., sgn(y) = e~,, sgn(z) -- e:} u . . 

Here ex, ey, ez~ { - 1 ,  1} with exeye~= 1. We will use the abbrevia- 
tions + ( - )  for + 1 ( - 1 )  in what follows. Only the cone with positive 
coordinates, (g~+" § § I, is an invariant set of F~ itself, while the other three 
cones are mapped cyclically between themselves. For # < - 1 ,  ,Ar is empty 
and the four cones of Jr'7, c constitute Jr'u; see Fig. la. However, for 

c - 1  < # < 0 ,  we additionally have a nonempty ~/~ which is equal to a 
compact and invariant set around the origin diffeomorphic to a sphere. 
It is wholly contained within the cube 9~; see Fig. lb. Since we will need 
this compact object several times, we define, for # e [ - 1, 0], 

..t-t'~, := ~ , n ~ =  {(x, y, z) ~ .~l i (x ,  y, z)=/~} (17) 

./t'~ degenerates to the origin at/~ = -1 .  At/~ =0 ,  it reaches the four cones 
of .tt'g ~, for which we also use the notation of Eq. (16), in one point each, 
namely in four of the vertices of cube ~ ,  which we will refer to as the set 

of 'pinches': 

:= Jt'~ n ~ ' g " =  {(1, 1, 1)} u ~ ,  
(18) 

~ : =  { ( 1 , - 1 , - 1 ) , ( - 1 , 1 , - 1 ) , ( - 1 , - 1 , 1 ) }  

See Fig. lc. In the case # = 0 ,  the compact set is only homeomorphic to a 
sphere. Finally, for # > 0, Jg," is again empty and .t-/~, -.At'u- "~ is always a 
connected, noncompact C~-manifold; see Fig. ld for a typical picture. 4 

Let us remark that we have described and depicted the invariant sets 
Jr'. for all ranges of /~, in keeping with our interest in this paper of 
investigating the dynamics on them for all ranges of $. Different physical 
applications of trace maps lead one to consider different regimes in #. For 
example, for the Fibonacci sequence, the tight-binding model mentioned in 
the Introduction "chooses" the regime # > 0, whereas the kicked two-level 
system "chooses" the regime # ~< 0; for details see 8 and references therein. 

We will be particularly interested in studying the periodic orbits of 
period n, or n-cycles of F~ (and later its generalizations). In this respect we 
note some consequences for the n-cycles of a 3D mapping with an arbitrary 
invariant I(x, y, z) (we use the term eigenvalue spectrum of an n-cycle for 
the set of eigenv~lues of the linearisation dF" evaluated at a point of the 
cycle, and henceforth 'OR' and 'OP' stand for, respectively, orientation- 
reversing and orientation-preserving): 

4 We are grateful to D. Joseph for providing these pictures. 
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P r o p o s i t i o n  1. Let F: [1~3....~ R3 be a 3D diffeomorphism with a 
continuously differentiable invariant I=I(x, y, z) such that I(Fx)=I(x), 
x = ( x ,  y ,z) .  Let po=(Xo,  Yo, Zo) be a point of an n-cycle of F with 
I(po) =/~o and Vl(po)~-0. Then: 

(i) { + I } is an eigenvalue of dF"(po). If F is also volume-preserving, 
the eigenvalue spectrum is { 1, 2, 2 -  ~ } if F is OR with n even or OP,  while 
it is { 1 , 2 , - 2 - J }  if F is OR with n odd. 

Fig. 1. The structure of the level sets JCp for (a) /1= -I.01 < -1, (b) -1  <,u= -0.5<0, 
(c) ,u=0, and (d) ,u =0.3 > 0. 
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(ii) If {+1}  is an eigenvalue of multiplicity 1, the point Po is 
embedded locally into a unique curve p (p )=  (x(p), y(/~), z(p)) that crosses 
the level set l ( x ) = p o ,  and whose points are points of n-cycles of F on 
adjacent level sets. 

(iii) The curve p(p) can intersect a curve of points of a (j .n)-cycle 
at Po only if dF"(po) has an eigenvalue equal to a j th  root of unity. 

The proof of this proposition follows from the local equivalence 
between a 3D mapping with an invariant and a one-parameter 2D 
mapping, which is outlined in the Appendix. The two eigenvalues typically 
different from + 1 describe the linearized motion around the n-cycle tangent 
to the level set. When the mapping is volume preserving, it follows that the 
periodic orbit on the surface is typically hyperbolic with real eigenvalues 
{2, 2 -~ } or {2, - 2  -~ } with 2 #  ___1, or elliptic with complex eigenvalues 
{e i~ e -;~ (in the OR case, elliptic cycles are necessarily of even period). 
Part (iii) of the proposition shows that a curve of points of n-cycles cannot 
intersect any other curve of the same or different period when the cycles are 
hyperbolic. 

Note that the determinant of the Jacobian matrix of (12) is 
det dFt = - 1 ,  so that F~ is volume-preserving and orientation-reversing. 
From (12) it is also seen that the origin and (I, 1, 1) are the fixed 
points of Ft,  and that the set # above forms the one 3-cycle of F~. It is 
further checked from (13) that these five points are precisely those at 
which V f =  0, and so apart from these points, all periodic orbits of Fj are 
guaranteed to include + 1 in their eigenvalue spectrum from Proposition 1. 
In fact, one derives {--1,  ein/3, e -i~/3} for the eigenvalue spectrum 
of (0, 0, 0), { - 1, (3 + x//-5)/2, (3 - x/~)/2) } for (1, 1, 1), and 
{ - 1 , 9 + 4 x / ~ , 9 - 4 x / ~ }  for the 3-cycle. The eigenvalue spectrum of 
(1, 1, 1) and the 3-cycle formed from ~ are nevertheless related because of 
a symmetry property of the dynamics of F~ to be discussed next. Before 
that we note that the typical picture of a mapping described by Proposi- 
tion 1 is for its 3D phase space to contain "strings" of n-cycles which can 
only intersect at points which satisfy the linearization condition of (iii). 
Indeed, when this condition is met for F~, we will see in the next Section 
that intersections can, and typically do, occur. 

Recalling that the invariant surfaces M~ have tetrahedral symmetry, it 
is natural to look at the way the mapping F~ transforms under the 
tetrahedral group: Similar to ref. 28, we say that a mapping L commutes 
with a (symmetry) group ~ of mappings if for all h e Jg there exists h' e 
such that 

L o h = h ' o L  (19) 
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The term "to commute with a group" is sometimes, e.g., in bifurcation 
theory, used in a more restricted sense to mean that L commutes with each 
element of ~ separately; cf. p. 13 of ref. 29). Our definition (19), however, 
will lead later, in the case of trace maps, to the familiar group-theoretic 
concept of ~'~ being a normal subgroup of a larger group of mappings 
containing L and ~ .  In these more algebraic terms, (19) means that L 
induces a homomorphism or an automorphism h ' =  q~L(h) on ~ff; compare 
Chapter9 of ref. 30 for this and related concepts. Furthermore, if ~0L 
is an automorphism on a finite group ~ of order N, it is useful to attach 
a permutation r~ e Su to L which summarizes the action. If in the case of 
F~ we define the subgroup X of the tetrahedral group by 

Z =  {Id, a , ,  ,r2, a3}. = Z~ | z/2 (20) 

where tr i are the pairwise sign changes, e.g., o~: (x, y , z ) ~ - - ~ ( x , - y , - z ) ,  
etc., we obtain the following result: 

P r o p o s i t i o n  2. The Fibonacci trace map F~ commutes with the 
group X via 

Fl o tri = tri_ 1 ~ FI (21) 

with a o := 0" 3. Thus, F~ commutes with each element of X. 

The proof is straightforward by direct verification of (21). Referring to 
above, the permutation induced by (21) is 

3 

($3 rather than S 4 suffices since the action on /d is trivial). One conse- 
quence is that if x is a point of a j-cycle, then tr;x is a point of a j-cycle, 
a (3j)-cycle, or a (j/3)-cycle (if 31j). Moreover, the eigenvalue spectra of 
the two cycles containing x and a;x are related correspondingly. With j =  1 
and x = (1, 1, I), we see why the set ~ is a 3-cycle, and why the eigenvalues 
of its linearization are cubes of the eigenvalues belonging to the fixed 
point x. 

Among the invariant sets ~'~, the case of Jr is particularly interesting 
because the compact part of the invariant surface can be parametrized with 
two variables '9~ and '92, (23'24) via 

(i) ( cos2   
'9' = cos 2rt'92 J (22) 

S: ,92 ~ cos 2r~('9, + ,92) / 
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With this parametrization, we find 

FI [ jr o S =  So RI (23) 

where F~ I ~  is the dynamics on J /~ and R~ is the substitution matrix for 
the Fibonacci chain. (8) [Of  course, Eq. (23) can be used to solve the 
dynamics on the whole of Jr' o if we allow complex 9i. But, as will become 
clear in a moment, we wish to treat the case ~t'~ separately.] Because cos 
2rtoq identifies ,9 and ,9 + m, m ~ 7:, the action of the integer matrix R~ on the 
right-hand side of Eq. (23) can be considered to be acting on the torus (i.e., 
take ~9 mod 1). Consequently, we can replace R, in (23) by LR,, where 

[ 9 , k [ \ ~ 2  
LRi:t,;)l'-'~ttgl_l_~q2 ) (mod 1) (24) 

and ~9~, oazE ( - 1 / 2 ,  1/2]. That is, the dynamics of F~ on Jt'g is semi- 
conjugate to that of LR,, which is an example of a hyperbolic toral 
automorphism, or Anosov system. This makes its dynamics on this surface 
solvable. The periodic orbits of hyperbolic toral automorphisms are dense 
in the phase space and the motion is homogeneously chaotic; see, e.g., 
ref. 25 for more details. However, on Jr'g, it should be stressed that we only 
have a semieonjugacy between F~ and LR, and not a conjugacy (or equiv- 
alence) as suggested by some previous authors. (26"27) This is because the 
transformation S is not uniquely invertible, in the sense that we must allow 
a choice of the two solutions in ( - 1 / 2 ,  1/2] of cos 2~9~=x when 
x ~ [ - 1, 1 ], in order to be able to cover via the parametrization S both of 
the z values on J/0 for given values of x and y. In other words, the transfor- 
mation S further identifies 'points of the torus, namely (oa,, ~92) and 
( - 9 ~ ,  -~gz). Consequently, the action of F~ on Jt'~ is described by the 
quotient of a toral automorphism by reflection through the origin (0, 0) 
and we find the following results: 

Proposition 3. On ~t'~, the Fibonacci trace map Ft acts as a 
pseudo.Anosov mapping. The number of fixed points of F'~ on Jt'~ is given 
by tr(R]'), where Rt is the substitution matrix (8), and there are 
periodic orbits of every period. The eigenvalue spectrum of an n-cycle on 
Jt'~, excepting the set ~ of Eq.(18), is either {1, z " , ( 1 - r ) " }  or 
{1, - : ,  - ( 1 -  z)"}, where ~ is the golden ratio. 

ProoL The .surface Jt'~ can be mapped onto the sphere 5: of radius 
around the origin (on which the set ~ lies) by radial projection 

H: Jt'~ F-+ 5 a. Then F~ I.~ induces a homeomorphism fo: 5: ~ 5e, where 

fo = Ho Fj I.~,~ o / 1 - I  
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Equation (23) shows that Jo ~ H S =  HSo R t, where H S  := Ho S inherits 
from S the identification of (9~, ~9,) and (-~gt, -~9:). It follows that fo is 
a homeomorphism of the two-sphere 50 equal to the quotient of the hyper- 
bolic total automorphism or Anosov map, LR,, by reflection through the 
origin (9~, ~92). As such, it is therefore a pseudo-Anosov map; see ref. 28, 
and refs. 50 and 14 for the general definition and properties of such 
mappings. The fixed points, or singularities, of the quotient by the 
reflection through the origin are given by 

(s , ,  s2) = {(0, 0), ( ' ,  �89 (0, �89 (�89 0)} 

and these map under 5 p and H S  to the set :~ of pinches, and are the 
so-called "l-prongs" of the pseudo-Anosov map. The fixed points of F]' 
on J t~,  i.e., {x~J /~ [F '~x=x} ,  follow from 

F'; I.,r o S =  So R 7 (25) 

which is a simple consequence of the semiconjugacy (23). From (25), they 
are given by x = $8, where 

R'~8= +8 (mod 1) (26) 

The number l, of solutions to (26), after identification of solutions 8 and 
- 8 ,  is /,,=tr(R';). Now a fixed point of F~' need not be a point of an 
n-cycle; it may belong to any k-cycle with kin.  However, a further conse- 
quence of Eq. (26), to~ether with ref. 28, is that F~ [.a~ has periodic orbits 
of all periods, i.e., possesses a genuine n-cycle for every n ~ ~. The eigen- 
value spectrum of cycles of F~ on .~/r follows from differentiating both 
sides of (25) and evaluating at 8 satifying (26). No conclusions can be 
drawn for dF'l[ u~(SS) if dS(8) vanishes, which happens precisely at those 
points that are the singularities of the quotient given above, and that 
correspond to the four pinches. Otherwise, we find if 2 is an eigenvalue of 
R~', then 2 ( - 2 )  is an eigenvalue of dF'i[ K~(SS) according as 8 satisfies 

�9 . , " 0 , 

(26) with the + ( - )  sign. The ad&tlonal elgenvalue + 1 follows from 
Proposition 1. �9 

Note that if fo in the above proof were really Anosov rather than 
pseudo-Anosov, then because Anosov systems are structurally stable, 

c dynamics on an open set of nearby level sets ~g~, would also be Anosov. 
But. pseudo-Anosov systems are not structurally stable, so we cannot draw 
this conclusion. 

Using Eq. (26) and x = $8, the points of periodic orbits on Jt'~ can be 
calculated explicitly if desired. If we just want to count the number p, of 
n-cycles on F~[.u, ~, we can use Proposition 3. We know that 
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l . = t r ( R ; ) = z " + ( 1 - z ) "  gives the total number of fixed points of F'~I.~:. 
Here l,, are nothing but the Lucas numbers, t3~) defined through 1o =t, 
11 = 1, and 1.+1=1.+l ._  j. To get p,, we must subtract the number of 
periodic points belonging to k-cycles with k in  but k < n, and then divide 
by n. In other words, 

1,, = ~ kpk (27) 
kin 

From the M6bius inversion formula ~32'31) we then get the formula 

1 

where/~(d) is the M6bius function (not to be mixed up with the # for the 
level sets used elsewhere). The first numbers (starting with Pl) for the 
Fibonacci case explicitly read 1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25,.... Certainly 
there are periodic orbits of FI that do not lie on ~ '~,  though they might 
belong to one-parameter families of periodic orbits originating on ~ '~;  
compare Proposition 1. This way, the numbers in (28) provide useful lower 
bounds on the number of families of n-cycles of Fl. 

Let us close this Section with several results on existence versus non- 
existence of bounded orbits of the Fibonacci trace map on the surfaces Jr 
for g ~< 0. Since the compact surface .At'~,, - 1  ~< # ~< 0, is an invariant set 
and since it is bounded by the box ~,  we immediately have the following 
result. 

P r o p o s i t i o n  4. For - 1  ~</~<0, all orbits that start on the 
compact surface ~r stay there and are bounded, both under forward and 
backward iteration. 

The distinction between periodic and quasiperiodic orbits on Jr is an 
interesting question to which we will return later in the context of bifurca- 
tions with # as the bifurcation parameter. Less obvious than Proposition 4 
is the following observation: 

P r o p o s i t i o n  5. All orbits on the surfaces ~t  ...... '~~ _~ �9 -, #<0, 
G%.e~= 1, are unbounded. Therefore, no periodic orbits exist on the 
disconnected cones. 

ProoL Observe from (11) and (12) with x . + ~ = y ,  and x . + 2 = z .  
that the dynamics of FI is equivalent to the difference equation 
x.+ l+X . _2  = 2 x . x . _  ~. We have Ixnl >1 for all n on the cones because 
they do n o t  touch the box ~ for u < 0 .  If, for any n e l l ,  we have 

822/74/3-4-25 



844 Roberts and Baake 

Ix,,x,,_,l~lx,,_21, the orbit diverges. To see this, we generalize an 
argument given in ref. 33. Assume the inequality holds, whence 

Ix , ,+  ,I = 1 2 x . x , , _  ~ -x.,-2l 

>1 2 Ix,,x,,_ ,I - Ix,,__~l ~ Ix.x._ ,I > max{ Ix,,I, Ix , ,_  ~1 } ~ Ix . I  > 1 

But this also implies I x,,+~l >[xn-~l  and thus the relation 
Ix,,+ ~x,,I > Ix,_ ,I, which is a stronger version of our original assumption 
involving the next triple of successive iterates. Repeating the argument, we 
get the inequality Ix,, § ~ x,,I > Ix,,_ t l > 1 for all m/> n. From the inequality 
used above, we then obtain Ix,, + ,I > Ix , , x , , _  ~l for m > n. Taking 
logarithms, i.a., a , ,=ln( Ix , , , I )>O,  we find am+t > a , , + a , , _ ~  and hence a 
sequence that diverges faster than a Fibonacci sequence (positive initial 
conditions!). Now, assuming that there 'be a bounded orbit, we had to 
conclude that Ix,,x,,_~l < Ix,,-21 for all n > 2 .  But then we would get a 
monotonically decreasing sequence that is bounded from below by 1. But 
such a sequence must converge--the limit either corresponding to a fixed 
point of F (on cg~+ + § or a 3-cycle (distributed over the other cones)! 
Since neither of them exists on the cones for # < 0, we have a contradiction: 
no bounded orbit (and thus no periodic orbit) can exist on the 
disconnected cones. �9 

Slightly different in nature is the structure of the orbits on the cones 
cg(0~"'"'~=), i.e., for/~ = 0. As already mentioned, the transformation S of (22) 
is also a parametrization of part of .It0 if we take oa; imaginary, equivalently 
if we make the replacement cos 2noq --. cosh ~9. We will call this transformed 
version of S the hyperbolic parametrization S'. It parametrizes the cone 
cg(0+ + § which, as already mentioned, is an invariant set I-wherefore the 
orbits which start from it always keep signature ( +  + + ) ] .  Recalling the 
tetrahedral symmetry of ~t'~,, in particular Jig% the parametrizations for 
the three remaining cones are given, respectively, by the composition of a~, 
cr 2, and 0" 3 of (20) with S'. For the dynamics on these cones we find the 
following result. 

Proposition 6. The only forward (backward) bounded orbits on 
the noncompact cone ~(0 ++ § are obtained from the images under the 
hyperbolic parametrization of the sets of points {(oa_~,oa)} with 
~9,=(1-z)"~9o(oa,,=z"oao). These points also generate the only forward 
(backward) bounded motion among the three remaining cones of j/go, 
with the modification that the points hop cyclically between the three cones 
as a consequence of the symmetry transformations under the group Z'. 
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ProoL Equation (23) also holds with S replaced by S', the hyper- 
bolic parametrization, and with F~l.q:~ replaced by Fjl~c+++J. Now R~ 
must be considered as a linear mapping of the entire plane, ~ i.e., we cannot 
take the ~9; mod 1. The only forward (backward) bounded orbits of 
the latter linear hyperbolic mapping are those on the stable (unstable) 
manifold of the origin (0, 0), which is the only fixed point of R~. These 
are given, respectively, by the sets of points listed in the Proposition. 
For the dynamics on the three remaining cones, parametrized by 
aioS', {i= 1,2,3}, using the above and Proposition2 gives 
Fto(a ioS ' )=cr i  ~o(FIoS')=(a~_IoS')oR]. Again the dynamics is 
generated by the hyperbolic linear map corresponding to R~, except that 
the image point under this map is sent onto a different cone to the initial 
point. Every third iterate returns to the same cone because F~ commutes 
with ai. �9 

Note that the bounded orbits of the above proposition converge under 
forward (backward) iteration to precisely the four pinches ~ of(18), which 
are those four vertices of the cube & where the cones ~'~o ~x'~,'':) touch the 
compact surface J[~. One physical consequence of Proposition 6 is the 
exact localization of the critical point of the Ising quantum chain on 
the Fibonacci quasilattice. 134"35) 

4. REVERSIBILITY A N D  EXISTENCE OF AN INVARIANT:  
D Y N A M I C A L  IMPLICATIONS 

Having shown the existence of the invariant (13) or the Fibonacci 
trace map (12) and some of its dynamical consequences, we now discuss 
another important dynamical property of the trace map, namely its 
time-reversal symmetry. Although this symmetry has been noticed 
before, t36"23"24~ its consequences have escaped a systematic study so far. The 
symmetry can be seen, for instance, from writing out the ubiquitous 6-cycle 
of (12), which plays an important role in determining scaling in the 
electronic band structure, t26) This 6-cycle is 

Pl(0,a, 0) ~ Pz(a, 0, 0) ~ P3(0, 0, - a )  

P4(0, - a ,  0) --* Ps( - a ,  0, 0) --* P6(0, 0, a) (29) 

where a is an arbitrary number. Notice that the first point PI and half-way 
point P4 of the 6-cycle lie on the plane {x=z}.  Moreover, the forward- 
going points from P~, namely P2 and P3, are reflections in this plane of the 
backward-going points from P~, namely P6 and Ps- These observations 



846 Roberts and Baake 

can be explained by noting that F~ in (12) can be written as the composi- 
tion F1 = Ht o GI, where 

(i)( <i)(i) H, ~-~ , Gt: ~ (30) 

2xy - z j 

are involutions, i.e., H, oH, =G~ o Gt =Id. Mappings like the Fibonacci 
trace map which can be written as the product of involutions are called 
reversible mappings. Periodic orbits like (29) that are left invariant under 
GI and H~ are called symmetric. 

More generally, a mapping L: I~"~ R" is called reversible ~37"38'u~ if 
there exists a mapping G satisfying 

L o G o L = G ,  G o G = l d  (31) 

This is equivalent to the definition given above of L being able to be 
written as the product of two involutions 

L = H o G ,  H o H = G o G = I d  (32) 

with H := LoG. An involution G that satisfies (31) for a given mapping L 
is called a reversing symmetry of L. This is because G creates a conjugacy 
between L and its inverse via 

L-' =GoLoG -I (33) 

noting G-~=G.  Equation (33) is a third equivalent definition of rever- 
sibility and indicates why reversibility is a generalization of time-reversal 
symmetry. The application of G to a trajectory of L is also a trajectory of 
L when followed in the opposite sense. 

Reversible mappings have been studied since the pioneering work of 
Birkhoff, c391 and reversibility has strong dynamical consequences. We now 
recall some of the properties of reversible mappings which we will use 
below; for details and derivations we refer to a recent review. "2~ 

I:11 If L is reversible with reversing symmetry G, then Lio G, i~ Z, is 
also a reversing symmetry of L. We call {LioG } the family of 
reversing symmetries generated by G. 

1:12 Any power of a reversible mapping L is reversible with at least 
the same reversing symmetries as the mapping, i.e., 
LioGoLi  =G, ie7/. 
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1:13 Reversibility is preserved under coordinate transformations, or 
conjugacies: the transformed mapping p oLop-~ has reversing 
symmetry P o G o p -  ~. 

R4 A reversible mapping L may possess more than one family of 
reversing symmetries, in which case it is called multiply revers- 
ible. For instance, if L commutes with a mapping T, then 
G ' = G o  T or G ' =  ToG are reversing symmetries if they are 
involutions, and are distinct from the family {LioG} provided 
T # L  i, i~_ .  

R5 If F is an invariant set of a reversible mapping L (i.e., L F =  F), 
then GF is also invariant, and GF equals the image of F under 
all the symmetries of the family { Lio G }. If GF = F then C is called 
symmetric (more specifically, G-symmetric). The eigenvalue spec- 
trum of a symmetric n-cycle comprises reciprocal pairs, i.e., if 2 
is an eigenvalue, so is 2-~. Periodic orbits that are not symmetric 
are called asymmetric, and come in pairs related by G. If Po is a 
periodic point belonging to one of the asymmetric cycles, then 
Gpo belongs to the other cycle of the pair, and the eigenvalues 
of dL ~ at Po are the reciprocals of those at Gpo. 

Reversibility facilitates the location of symmetric periodic orbits, 
which results in significant computational advantages/~2) We observed 
above that the 6-cycle (29) of the Fibonacci mapping is invariant under 
the reversing symmetry G~ in (30), and so is symmetric. It contains two 
points Pl and P4 which are fixed points of G~. More generally, with 
Fix(G) := {xlGx = x}, etc., we can say the following: 

1:16 An orbit of L is a symmetric even 2j-cycle if and only if it 
contains precisely two points x and LYx in Fix(G), or precisely 
two such points in Fix(LoG). An orbit of L is a symmetric 
odd(2j + 1 )-cycle if and only if it contains precisely one point x in 
Fix(G) and precisely one point L j+ ~x in Fix(LoG). 

An equivalent characterization of symmetric cycles is in terms of inter- 
sections of the fixed-point sets of the full family of reversing symmetries, 
defined by ~-7~:= { x l L i o G x = x } .  The ~ can be generated from 
~o := Fix(G) and ~ := Fix(LoG) via ~2j= LY~o and ~ j +  l = Li~-'~. 

R7 If y ~ Yp c~ ~q and (p - q) is odd, then y belongs to a symmetric 
odd-period cycle. If ( p - q )  is even, then y belongs to a sym- 
metric even-period cycle or else ZlP-q)/2y = y. The dimension of 
the sets ~p and Jq and their intersection set gives an indication 
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of the dimension of the set of symmetric periodic orbits of a 
particular period. 

Here we apply and demonstrate these reversibility properties on 3D 
reversible mappings, in particular the Fibonacci mapping. A decomposition 
of the Fibonacci mapping (12) into involutions is provided by (30). With 
reference to R4, we can ask if F~ is multiply reversible because it has non- 
trivial commutators. It is easy to verify, for instance, that (12) commutes 
with no nontrivial linear maps. However, we have seen via Proposition 2 
that F~ commutes with the linear maps or; belonging to the group Z" of 
(20). Also it is reversible with reversing symmetry G~ from R2. One readily 
calculates that G~ o tr2=a2OGl : (x, y, z)~ -~, ( - z ,  y , - x )  is an involution, 
whereas Gloer l=o3oGl : ( x , y , z )~ - - -~ ( - - z , - y , x )  and Gloo '3=o ' loGn:  
(x, y , z ) ~ ( z , - y , - x )  are diffeomorphisms of order 4, the squares of 
which equal a2. From R4 above, F~ is multiply reversible with the family 
of reversing symmetries {F~io G'} with G'  = GI o or2. 

While G loa ,  and GlOa 3 are not reversing symmetries of F~ by the 
above definition, they motivate considering a generalization of reversibility. 
A mapping is called weakly reversible 138) if it satisfies L o G o L = G, equiv- 
alently (33), where G is an arbitrary homeomorphism, i.e., not necessarily 
an involution. We call such a G a weak reversing symmetry. All reversible 
mappings are weakly reversible but not vice versa. Nevertheless, the 
properties R1-R7 meaningfully extend to weakly reversible mappings, c4~ 
Significantly in R4, without the restriction that G be an involution, the 
composition of a commuting mapping T and a weak reversing symmetry of 
a weakly reversible mapping is always a weak reversing symmetry. This is 
why F~ is weakly reversible with respect to G~ocrt and Gtoo" 3. Also in 
general, the composition of two weak reversing symmetries is a com- 
mutator for L. One can then study the group built up from commuting 
maps and weakly reversing symmetries34~ In particular, even powers G 2J 
of a weak reversing symmetry G typically generate nontrivial commutators 
for L, whereas odd powers G zj+ ~ are weak reversing symmetries belonging 
to different families. If the weak reversing symmetry is of finite order and 
the mapping L is not an involution, then G is necessarily of even order. The 
fact that this order need not be 2 as in reversibility means that, with 
reference to property R5 for weakly reversible mappings, there may be 

5 We use the adjective "weak" for a noninvolutory reversing symmetry (unlike ref. 40) only to 
mirror Sevryuk's previous terminology of "weakly reversible. "'c38) On a purely algebraic level, 
it is most natural to consider the conjugacy (33) between L and L -~ without restricting G 
to be an involution. In the present context, it will turn out that if a trace map has a genuine 
weak reversing symmetry, then it typically also has a true reversing symmetry, i.e., an 
involutory one. 
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more than 2 asymmetric cycles with reciprocal eigenvalues---every odd 
power of G can map a cycle to a different partner, for instance. 

In the present case, at the level of F~ instead of F~, it is interesting to 
note that F I is not (weakly) reversible with respect to any of G~otr~. We 
have an example of a more general reversibility situation again. Fz is an 
example of a mapping L which commutes with a group M' via (19) and 
also satisfies L o G = G o L-J .  It follows that for any element of the form 
k = h o G there exists an element k'= h'o G such that 

L o k = k ' o L  -~ (34) 

Equation (34) represents the reversibility analog of (19), see also (41). The 
algebraic structure of (34) is not our purpose here, but will be given else- 
where. (42) One of our interests later in the paper will be to investigate, 
among a large class of trace maps, how commonly a commuting group and 
a (weak) reversing symmetry occur, these being the ingredients of this 
generalized structure. We also note that the generalizations (19) and (34) 
of symmetry and reversing symmetry have also been noted and investigated 
recently in some other dynamical systems. (41) 

We concentrate now on the symmetric cycles of F~ of (12) with respect 
to G~ and its family. From (30), Fix(Gl) is a two-dimensional set, the plane 
{(x, y, x )[x ,  y e R } ,  whereas Fix(Hi) is a one-dimensional set, the curve 
{(y,y,  y 2 ) l y e •  }. The sets intersect in the two points (0 ,0 ,0)  and 
(1, 1, 1), which are consequently (symmetric) fixed points of F~. In 
property R7, the dimensions of the fixed sets :2j and ~ j+~ ,  respectively, 
are 2 and 1 for all j. We expect isolated symmetric odd-cycles containing 
the point of intersection of a 2D surface :2j and a 1D curve :2k+ ~, and 
curves of nonisolated even-cycles generated by the intersections of two of 
the 2D surfaces ~ j .  We do not expect any even-cycles from intersections 
of the 1D curves of ~ j+~ .  We observed from Proposition 1 that in 3D 
mappings with an invariant, curves of periodic orbits would also be 
expected. However, in that case, one would not typically expect some odd 
cycles to be isolated. This feature stems from the reversibility property. 
By possessing curves of symmetric even-cycles but isolated symmetric 
odd-cycles, the Fibonacci mapping is typical of 3D orientation-reversing 
reversible mappings, most of which of course do not possess an integral 
of motion like F~. At the level of asymmetric cycles in such reversible 
mappings, we do .not expect a distinction between even and odd cycles. 

We illustrate property R6 explicitly in Table I, where we show the 
symmetric cycles of (12) up to period 7. We find the even 2n-cycles by 
trialling a point of the form (a, b, a) and demanding that the (n)th iterate 
also have x = z. We find one-parameter curves of even-cycles as predicted. 
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Symmetric odd (2n-t-1)-cycles, on the other hand, are found by starting 
with a point (b, b, b 2) and demanding that the (n)th iterate satisfy x = z .  
Symmetric odd-cycles are isolated, again as expected from the dimension 
of Fix(Hi). Beyond the 7-cycle, analytical calculation of symmetric cycles 
becomes increasingly cumbersome. At the level of the 8-cycles, irrational 
expressions start to appear. There are two families of 8-cycles generated by 
the curves (a, d+(a), a) and (a, d (a), a), where 

a(2a - 1 )(4a + 1 ) + [a(2a - I )(2a 2 + 3a + 2)] 1/2 
d+_(a) - 4a(4a 2 - 1) (35) 

Table I also shows the eigenvalue spectrum for each symmetric n-cycle. 
The structure of the spectrum for each cycle is a consequence of the 
combination of FI in (12) being both reversible and possessing an invariant 
[note that GI and HI also preserve i of (13)]. The consequences of the 
latter property were given in Proposition l(i) of the previous Section, 
whereas reversibility gives the following result. 

Proposi t ion  7. In a 3D (weakly) reversible mapping, the eigen- 
values of symmetric even-cycles are { 1, 2, 2 i }; for symmetric odd-cycles, 
the eigenvalues are { l, )~, 2-  ' } if the mapping is OP and { - 1, 2, 2 - 1 } if 
the mapping is OR. If the mapping is (weakly) reversible and also has an 
invariant I, the eigenvalues are not further restricted, except for symmetric 
odd-cycles of OR mappings for which VI is nonvanishing, which must have 
spectrum { - 1, l,  1 }. 

Proof. This result is a straightforward consequence of the reciprocal 
pairing of eigenvalues of symmetric cycles given in R5, which extends to 
weakly reversible mappings, together with the fact that in odd dimensions 
this forces one eigenvalue to be self-reciprocal, i.e., -t- 1. When the (weakly) 
reversible mapping also has an invariant, odd-cycles are forced to have 
an eigenvalue { + 1 } from Proposition 1, which leads to their degenerate 
spectrum. �9 

Note that we could also conclude the spectrum { - 1 ,  l, 1} for odd- 
cycles of OR (weakly) reversible 3D mappings with an invariant by using 
the fact that they are isolated. From Proposition l(ii), a cycle can only be 
isolated by having more than one eigenvalue equal to { + l }. 

From Table l~, we can further observe the effects of the symmetry 
property of FI given by Proposition 2 and the ensuing discussion. Apart 
from linking the fixed point (1, l, l) and the 3-cycle, as described pre- 
viously, we find that _r links the 2-cycle and the second of the 6-cycles. For 
example, the image of (a, a/ (2a-1) ,  a) by tr 2 becomes (a, a/(2a+l) ,  a) 
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when a ~  - a .  Furthermore, the eigenvalues of the 6-cycle are cubes of 
those of the 2-cycle. This linking of cycles continues throughout the per i  
odic orbits of F j - - the  image of points of the 4-cycle under ai give points 
of a 12-cycle. Some cycles like the origin and the first-listed 6-cycle are self- 
invariant under the elements of S. Some of these observations of cycles 
linked by the symmetry property of Fj were made previously in ref. 7. 

It is interesting to use Table I to look at the intersections of the curves 
of symmetric even-cycles. For example, the curve of symmetric 2-cycles 
intersects the curves of symmetric 4-cycles in the points ( -  1/2, 1/4, - 1/2) 
and (1/4, -1 /2 ,  1/4). From (13) these points of intersection lie on the level 
set (14) with /~ = - 9 / 1 6 = - 0 . 5 6 2 5 .  Similarly, the curves of symmetric 
4-cycles intersect the family of curves of symmetric 8-cycles generated from 
the family (a,d+(a),a) in four points at which / ~ 2 = - 5 / 1 6 = - 0 . 3 1 2 5 .  
Since each G~-symmetric even-cycle has tw.o points on the symmetry plane 
{ x = - } ,  we can plot the intersecting curves of 2-, 4-, and 8-cycles on the 
projection of this plane onto the plane { : = 0 } .  Likewise we can plot the 
intersection of the compact invariant surfaces dt"~i for /at  I - -1 ,  0] with 
the symmetry plane. This produces the contours 

{(x, y )~  R212x'-(l _y)+y2_ 1 =/a} (36) 

Figure 2 shows these pictures. 
An alternative way to calculate the point of intersection of the 2-cycle 

and the 4-cycle in Table I is to calculate dF~ evaluated at a point of the 
2-cycle curve and to determine, as a function of position on the curve, 
when the eigenvalue spectrum { 1, 2, 2-  ~ } equals { 1, - 1, - 1 }, i.e., satisfies 
J.+ 2 - 1 = - 2 .  This is equivalent to t r ( d F ~ ) = - 1 .  Since position on the 
curve of 2-cycles is a function of #, this process determines a value of/~ and 
hence a surface ~,~, on which the stability of the 2-cycle is transitional 
between being elliptic and hyperbolic. The correspondence between this 
and the intersection of the 2-cycle and 4-cycle follows from Proposi- 
tion 1 (iii), which shows that the only possibility for a point ofintersection with 
a curve of cycles of double the period is if the linearization contains { - 1 }. 

We have exploited the reversibility of the Fibonacci trace map to con- 
tinue to calculate numerically the period-doubling intersections of 2n-cycles 
and 2" § a-cycles. Starting with the 8-cycle, we track numerically the 2"-cycle 
along its curve on the symmetry plane { x = z }  until tr(dF~') evaluated on 
the curve equals - 1 ,  and note the value/a =/~,, at which this occurs. Just 
beyond this # value we find two points of a 22+ ~-cycle emanating on the 
symmetry plane from one of the two points of the 2n-cycle on the plane. 
Iterating the process, we find 

{/a3 = - 0.2818352255 .... /~4 = -0.2782223174...,/a 5 = -0.2778064018 .... 

/16 = - 0.2777586826, ~7 = -0.2777532105... } 
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-1"0 

1'0 

-1-0 

1-0 

-1"0 

1-0 

-1"0 

1"0 

Fig. 2. Top: The projection, onto the plane {z=0} ,  of .#~  intersected with 
{ x = z }  =: Fix(Gl), corresponding to /1 values {-0 .99,  -0 .95,  -0 .90,  -0 .75,  -0.5625, 
-0.3125} (from the origin outward). The projection of J t ' ~ n  { x = z }  comprises the outer 
parabolic curve and the line { y =  1 }. Bottom: Part  of the top figure, showing the projections 
of the curves of points of symmetric 2-, 4-, and 8-cycles that lie on the plane {x = z }. The 
thick part of the curves indicates where the corresponding cycles are elliptic. Additionally, the 
projection of Jr n {x = z } wi th / t  = -0.281835... is shown where a branch of the symmetric 
8-cycle curve intersects symmetric 16-cycles (not shown). 
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Regarding the value/~,, of the invariant set (14) as a parameter, we find the 
scaling of this period-doubling sequence is given by 

6n=/~" - / ~ ' -  ~ , 8.721... (37) 
//,, + j -- / . t , ,  

e.g., 6 6 = 8.722 .... Furthermore, an estimate of the accumulation value of 
{l~,,} is/~:~ = -0.27775 .... 

The number on the right-hand side of (37) is that associated with 
period-doubling sequences in 2D area-preserving or 2D reversible map- 
pings. (]-'1 This is not so surprising because effectively the presence of the 
invariant turns this into a 2D problem. The 3D mapping F~ is related to 
a 2D mapping in the following way. The equation I(x, y, z ) = #  with [ 
given by (!3) defines two z values for given x, y, and # satisfying/~ > - 1  
and x 2 + y2 < 1 +/~. They are given by 

2+ =J+(x, y,/a) = xy___+ [ ( x  2 -  1) (1  ' 2 -  1 ,  --I--/.t] l/2 (38) 

The plane {z = 0} divides these two values and for ~ s ( - 1 ,  0] divides the 
"balls" Jg~i into an upper branch on which z > 0 and a lower branch on 
which z < 0. Note that from Table I and Fig. 2 the part of the curve of sym- 
metric 2-cycles that intersects the symmetric 4-cycles is that part that cuts 
across the lower branches of .#~i. If we consider F~, this portion of the 
curve becomes a curve of symmetric fixed points extending downward 
from the origin across these lower branches. It can be checked that, in 
numerically following the period-doubling of F~ as described above, the 
cycles in the cascade considered as cycles of F~ continue to have all their 
points on the lower branches of J~'~i. If we define the transforma- 
tions P:(x, y,z)~---*(x, y, cz=f(x, y,z)) and P-l:(x, y, lx)~---~(x, y,z= 
J_(x, Y, IO), then M=poF~oP -~ has the form 

),,J (x, y, la))) la) 
"; --\f((X: y,J_(x, v, : "  (39, M: 

with f(x,y,z)=,_ and g(x, y , z ,=2yz -x .  The mapping M is a well- 
defined transformation of F~ in a region m which the dynamics of F~ 
remains wholly on the lower branches of ~-/~. Such a region, albeit small, 
can be found in a neighborhood of the hierarchy of curves of 2"-cycles of 
F~. In this region, M is conjugate to the reversible volume-preserving map- 
ping F~, which means that its nontrivial part, a 2D mapping, is reversible 
and measure-preserving (conjugate to area-preservingCl21). This is an exten- 
sion of the local conjugacy argument used in the Appendix. The inter- 
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sections of the curves of cycles of F, is a manifestation of the bifurcation 
behavior of area-preserving reversible 2D mappings, ~2~ and the latter 
theory implies in the present context that generically, for example, a curve 
of 2"-cycles will intersect a curve of 2 "+'-cycles when the eigenvalues 
corresponding to motion on the level set are both equal to { - 1 } .  
Although we have not studied it  numerically, we would expect via a similar 
argument to get cascades of period-tupling intersections between the curves 
of even symmetric cycles, with the tupling exponents of 2D area-preserving 
reversible mappings. Note that the mapping M above is similar to what 
would be obtained by trivially lifting a one-parameter 2D mapping to 3D 
by calling the parameter a new coordinate. As we have seen, locally and to 
some extent globally, such a mapping explains much of the dynamics of F,.  

We now make some remarks about the significance of ,,g~ in the 
reversible dynamics of F,.  

The period-doubling process just described occurs and accumulates in 
the region of I~ 3 foliated by the surfaces ~J//'~i of (14) with - 1  < IL < 0. The 
surface ,J#~ provides a barrier to the process because from Proposition 3 all 
cycles on this surface "off" the pinches are hyperbolic. As such, they must 
remain hyperbolic in some range of /a either side of /a=0,  whereas a 
2"-cycle is elliptic on the level surfaces prior to the one where it intersects 
a 2 "§ t-cycle. The hyperbolicity of the cycles of F~ on ~#~ also means, via 
Proposition l(ii), that all cycles lie on curves that extend to adjacent level 
sets, and that a given curve does not intersect any other for some range 
over these level sets. Studies of the energy spectrum of the tight-binding 
problem with a Fibonacci quasiperiodic potential suggest that on the sur- 
faces ~ ,  with ~ > 0, all periodic orbits of F, are hyperbolic. (This sugges- 
tion follows from the fact that the spectrum has been shown to be a Cantor 
set. t431 On the other hand, an elliptic n-cycle in the regime /~>0 would 
be surrounded by a finite-size ball of bounded motion via KAM theory, 
and would thus contribute a finite-width band to the spectrum.) The 
implication that all cycles for g > 0  are hyperbolic again implies from 
Proposition l(ii) that there are no intersections of periodic orbit curves 
in this range of/~. Results in ref. 36 also suggest regions in R 3 where the 
curves can and cannot be in the regime/~ > 0. 

The additional fact that on ~ '~  we have the dynamics of F~ semi- 
conjugate to a chaotic system, a toral automorphism, is reminiscent of an 
analogous scenario in 1D. In the logistic map x ~ # x ( l - x ) ,  there is a 
period-doubling cascade from the nonzero fixed point beginning at /~ = 3 
and accumulating at ~ .  = 3.5699 .... For/~ = 4, the logistic map is solvable 
and semiconjugate to the chaotic map of the circle 0 ~ 20 by the transfor- 
mation s: 0 ---, cos 0; cf. ref. 25, w 1.8. Of course, the scaling 6 characterizing 
the period doubling in the logistic map is the dissipative value 4.669 .... 
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In the 2D case we have investigated above, the period doubling fi is the 
conservative value 8.721 .... It would be interesting to see if this conservative 
5 could be verified experimentally. There are several important physical 
problems which choose the regime - 1  < / 1 < 0  in which the period 
doubling occurs, the most prominent being the quasiperiodically kicked 
two-level system. ~8~ 

The fact that F, has the invariant of motion (13) and is reversible with 
a reversing symmetry G a that preserves this invariant creates a one- 
parameter family of reversible dynamical systems on the 2D level sets ~r 
of i, the parameter being /~. It is interesting to see how the reversibility 
works on the particular surface ~ '~ where we have the advantage of the 
parametrization S in (22). Because G,, Ha, and tr; of the group Z preserve 
this surface, we can write 

Gal.~r~ooS=SoRc,, H,I.rrooS=SoRH,, tr;l.~oS=Sof~, (40) 

where 

and 

RG,: (Sa,8_,)~-+(Sa+82,-82) ,  RH,: (8a,82)~--'(--,92,,9,)(41) 

f~,: ( 8 , , , % ) ~  (81, 8 2 -  �89 

f,,,: (81, 82)~--~(�89 - 8 2 )  (42) 
1 

f , ' 3 :  (81 , 8 2 )  I"~ ( 1 - -  81 , 2 - -  ~ 2 )  

All these transformations are considered on the torus (i.e., taken 
mod 1 ) and one can alternatively take the negative of any of these transfor- 
mations because of the identification of (oa a, 82) and (-~ga, - 8 2 )  by S. 
Noting also the representation of F~ I.a[~ from (23) and (24), we find that 
the reversibility relation Fa o Ga o F, = Ga and the semiconjugacies involving 
S induce the relation So(R, oRo, oR~)=SoRa, for the 2D mappings on 
J[~. Indeed one can choose to satisfy this by taking R~ o Ra, o Ra = --RG,, 
which indicates the generalizations in the notion of reversibility that arise 
when a reversible system is mapped under a semiconjugacy (cf. also ref. 42). 
Note also that the representations of Ga and Ha on Jt'~ are linear, but this 
is not true of tr i. This is because G~ and H~ are themselves trace maps for 
appropriately chosen substitution rules, and this explains the suggestive 
"R" notation used for their representations, whereas a~ can never be trace 
maps. We will return to this point in Section 6. 

We conclude this Section with some remarks about asymmetric cycles 
of the Fibonacci trace map. Without the benefits of symmetry, finding 
asymmetric cycles in a 3D reversible mapping in general necessitates a 3D 
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search. Because of the invariant, Proposition 1 still holds and we expect 
asymmetric cycles to lie on curves, with their intersections governed by 
(iii). We do not expect a difference between odd- and even-cycles, as 
occurred in the symmetric case, because of the different dimensions of 
Fix(G~ ) and Fix(Hi ). Indeed, considering Gt-asymmetric cycles of F, ,  it is 
easy to check that all the fixed points through 4-cycles of F t are given 
precisely by the G j-symmetric cycles of Table I. The first asymmetric cycles 
of F~ occur at the level of 5-cycles. One way to see this is to observe that 
Table I produces only one (symmetric) 5-cycle which is clearly not on Jr 
whereas from counting the 5-cycles on J /~  using (28) we have P5 = 2. The 
latter 5-cycles must be an asymmetric pair. In general, the asymmetric 
5-cycle pair is generated by the two curves (a,b +(a), c +(a)) and 
(a, b_(a), c (a)), where c• are solutions of the quadratic equation 

and 

8ac 2 + (8a 2 - 2) c - 2a - 1 = 0 (43) 

b• = - �89 + 2 ( a + c •  (44) 

Note that (43) and (44) are symmetric in a and c, reflecting the fact that 
the image under G~ of a solution is also a solution. 

Even though reversibility cannot be used to find asymmetric cycles, 
one way numerically to build up curves of asymmetric odd-cycles of F~ is 
to start by first finding them on ~#~. This is because of the following result. 

Proposi t ion  8. All odd n-cycles of F~ on o#~ for n/> 5 are asym- 
metric with respect to any (weak) reversing symmetry of F~. The number 
p,, of such n-cycles is even. 

Proof. Because F~ is OR, the eigenvalue spectrum of an odd-cycle 
which is symmetric with respect to any (weak) reversing symmetry of F~ is 
{ - 1 ,  l, l} from Proposition 7. However, from Proposition 3, the eigen- 
value spectrum of all cycles on J[~ off the set ~ of pinches, in particular 
odd n-cycles with n >/5, is known to be different from this. Hence any such 
odd n-cycle is asymmetric with respect to a (weak) reversing symmetry. 
Now F~ has a reversing involution preserving ./g~, e.g. G~, and an involu- 
tion acting on the set of n-cycles divides them into G~-invariant pairs. Any 
cycle not in a pair would be necessarily invariant under G~, contradicting 
the fact that it is asymmetric. �9 

The great advantage of ..g~ is, of course, that on this surface the 
dynamics of F~ is solvable and this can be exploited to find the odd-cycles. 
The curves of odd-cycles in which they are embedded can then be numeri- 
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cally followed off this surface. For example, at the level of 5-cycles on .At'g, 
we can solve Eq. (26) for n =  5 to find that ~=(1/11,  4/11) is a solution in 
the ( + ) case, and that ~ = (4/11, 10/11 ) is a solution in the ( - ) case. These 
points generate, respectively, a 5-cycle and a 10-cycle of LR~ of (24), which 
are checked to be linked to each other by the representations Rc~ and RH, 
of (41). Taking the images of these two cycles under S of (22) produces the 
two asymmetric 5-cycles on Jt'~. 

With respect to the second statement of the above Proposition, one 
can verify for F~ that p,, is even when n is odd using the formula (28). From 
a number-theoretic point of view, Proposition 8 says that when n is odd, 
the right-hand side of (28) is divisible by two. We will see this more 
generally in Section 6. If we consider asymmetry with respect to GL, we can 
say even more about asymmetric odd n-cycles: 

P r o p o s i t i o n  9. All odd n-cycles of F~ on ~,~, for p > 0  are 
G~-asymmetric. 

ProoL From R5-R6, an odd-cycle of F~ is either G~-symmetric or 
G~-asymmetric. In the former case, the cycle must contain a point 
{y, y, 3, 2 } in Fix(Hi). From (13), I(y, y, y2 )=  _ ( y 2 _  1)2<0. The only 
G~-symmetric odd-cycles of F~ with p = 0 are the fixed point and 3-cycle of 
the pinches (18). Otherwise, in view of Proposition 5, these cycles lie on 
~#'~i, - 1  < p < 0, and an odd-cycle of F~ on Jr for p > 0 is necessarily 
asymmetric with respect to G~. �9 

It is worth noting that, although asymmetric odd cycles typically lie 
on curves, most curves belonging to different asymmetric odd cycles cannot 
intersect. This is because F~ is OR with an invariant and the spectrum 
{ 1, 2, - 2-  ~ } of an odd n-cycle precludes it having an eigenvalue equal to 
a j th  root of unity when j > 2; cf. Proposition l(iii). This would be true of 
odd n-cycles in any 3D OR volume-preserving mapping with an invariant, 
irrespective of it being reversible. In any case, one could study numerically 
period-doubling intersections of curves of asymmetric odd cycles or asym- 
metric even cycles (or period-tupling of asymmetric even cycles). One 
would typically expect such intersections where Proposition l(iii) permits 
them, again irrespective of reversibility, because the intersection theory is 
described locally by the conjugacy to a 2D conservative mapping whose 
bifurcation theory, irrespective of reversibility or symmetric or asymmetric, 
is given by ref. 45. Also one would expect the p values at which intersec- 
tions occur to scale with the 2D conservative values. It is also worth being 
mindful of the fact that ref. 44 has pointed out some anomalous behavior 
that can occur in period-doubling and period-tupling of 2D conservative 
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mappings that commute with a group as in Eq. (19), which could also 
appear in mappings like FI. 

In the next Section we give some further examples of 3D trace maps 
that are both reversible and have an invariant. 

5. SOME GENERALIZATIONS OF THE FIBONACCI 
TRACE M A P  

Following the above discussion of the Fibonacci trace map, we now 
list three classes of trace maps of increasing complexity and then show that 
they retain many of the structural properties found in F~. To calculate each 
of the trace maps, we use the prescription at the end of Section 2. That is, 
we use the substitution rule p acting on Sl(2, C) matrices A and B to 
induce the associated trace map Fo via 

( i )  / � 8 9  / � 89  [fp(x,y,z)X~ 
Fp'  = /  �89 / � 8 9  y,z)/ (45) 

\ �89  \�89 \h,(x, y , z ) /  

Example 1. Our first example is a class of volume-preserving, 
orientation-reversing trace maps derived from the substitution rule (l~ ~)  

a ~ b  
P2" b~bla (46) 

which is invertible via p~. l.a~a-~b, b--*a. The corresponding 
substitution matrix reads 

This matrix has irrational eigenvalues 2~1= [1+ (1 z +4)1/2]/2 which are 
the so-called metallic means. The infinite words made from the rule (46) are 
again aperiodic. 

The resulting trace map reads 

F2: ~ zUt_l(y)--xUt_2(y) (48) 

zU~(),)-- xU~ I(Y) / 

an expression given before in ref. 27. Here, UI(y) are Chebyshev's polyno- 
mials of the second kind. They can be defined by the recurrence relation 

822'74/3-4-26 
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U~+ ~ (y )=  2 y U ~ ( y ) -  U~_ ~(y) together with the initial conditions U _ z - 0  
and Uo = 1. Note that they are thus well defined for all integer/, although 
in the context of orthogonal polynomials one only needs l>/0. (46) Indeed, 
Eq. (48) is valid as the trace map of the substitution (46) for all l e  7/. 

E x a m p l e  2. Consider the substitution rule 

a ~ (ba) m - l b 
(49) 

P3: b ~ ( b a ) ' b  

It is invertible via P3 l: a ~ ( a -  ~b ) m a -  1, b --* ( a b -  1 ),,,- 1 a and belongs to 
the substitution matrix R3, 

m - 1  m ) 
R3 = (50) 

m m +  1 

with eigenvalues 2~"1 = m__+ (m2+ 1) 1/2 and det (R3)= --1. This gives rise 
to the following 3D volume-preserving, orientation-reversing trace map: 

(i)( 2 z, ) F3" ~ y U , , ( z ) - x U , , _ l ( z )  (51) 

2{ y U  . . . .  , ( z )  - X U m _  2(z)} { y U . , ( z )  --  x U . , _  ,(z)} 

which is of slightly more complex form than (48). Note that there is an 
overlap: m = 1 in (51) coincides with 1= 2 in (48) after a simple change of 
coordinates. One therefore knows F3, for m = 1, to have the same dynami- 
cal properties as F2, for l = 2. 

Example 3. Our third example is obtained from the substitution 
matrix 

1 1 ) (52) 
R4= l 1+1 

which, unlike R2 and 83, is not symmetric for 14: 1. The substitution 
underlying R4 can be taken to be 

a ~ b a  
P4" b ~ ( b a ) t b  (53) 
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a rule which is also invertible. The inverse is given by PK ~: a--* b- la  ~§ ~, 
b--, a-lb. By the same methods as in the previous examples, we obtain the 
trace map 

( i / (  z F4" )--) y U l ( z ) -  xUl_ l(z) (54) 

\yUt+ l(z) - xUl(z) / 

which is volume- and orientation-preserving. 
There are many similarities of these examples with the Fibonacci trace 

map F~. Let us first state the following result: 

P r o p o s i t i o n  10. The trace maps F2 of (48), F 3 of (51), and F4 of 
(54) all leave I(x, y, z) of (13) invariant. Moreover, they are all reversible 
with, for example, reversing symmetries H1 of (30) for / '2  and F3, and G~ 
of (30) for G .  

ProoL It is known that F2 has i ( x , y , z )  of Eq.(13) as an 
invariant, (27) but it is also true of / '3  and/ '4 .  This fact can most easily be 
seen from Nielsen's theorem(a7'13): Since all substitutions in question are 
automorphisms of the free group ~ of two generators, the group com- 
mutator K(A, B)= ABA-  ~B-' is mapped, under p, to a conjugate of itself 
or of its inverse, i.e., K(p(A), p(B))= W[K(A, B)] • W-~ with suitable W; 
see refs. 13, 10, and 49 for details. The exponent on the right-hand side 
coincides with the determinant of the substitution matrix, t8~ The result 
then follows from the observation that, with x =  �89 etc., as above, 
tr(K(A, B) )=4 i (x ,  y, z ) + 2  for matrices in S1(2, C), which can be shown 
by the Cayley-Hamilton theorem and has been well known since the last 
century. (4.5.10) 

The relations F_, o H~ o F2 = Ht and F3 o H~ o F3 = H, can be verified 
by direct computation using the recurrence relation of the Chebyshev 
polynomials and the identities (Ul_, UI_2-  UtUl 3)(y)=2Y and 
U ~ -  UI_, UI+ ~ -= I, respectively. These identities can be checked induc- 
tively by means of the recurrence relations of the Chebyshev polynomials. 
The latter identity is also needed to verify F4oG, oF#=Gt. �9 

Since /'2, F3, and F4 are reversible with reversing symmetries as 
indicated above, they automatically have a whole family of reversing 
symmetries; compare property R1. In particular, they can be written as a 
product of involutions, e.g.,/72 = H~ o (H~ oF2). Note that for l =  1, one has 
HIoFz=G I of (30). 
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At this point we can expect many similarities of the dynamics of (48) 
with that of the Fibonacci trace map (12), the latter being contained for 
l=  1. This has partly been studied by ref. 48 in a slightly different coor- 
dinate system which has, however, the disadvantage of losing the volume 
preservation and introducing unnecessary singularities. In view of the 
results of the Appendix and the comments about the Fibonacci trace map, 
we expect period-doubling and -tupling cascades in (48) to be typical, 
culminating in a pseudo-Anosov system on the compact part ~ '~ of the 
invariant surface for p = 0. There, the dynamics is again semiconjugate to 
a hyperbolic toral automorphism given by the matrix R2 of Eq. (47) and 
has the Lyapunov exponents +log(2(+t)). 

The trace map F 3 has fixed points (0, 0, 0), (I, 1, 1), and ( - 1 ,  - 1 ,  1). 
For m even, also (1, - 1 ,  - 1 )  and ( - 1 ,  1, - 1 )  are fixed points, while the 
latter form a symmetric 2-cycle for m odd. Furthermore, (0, 0, z) gives a 
one-parameter f a m i l y  of symmetric 2-cycles which intersects with the fixed 
point (0, 0, 0). Here again, one can expect a period doubling cascade, and 
also the invariant set Jt'~ plays a similar role as above: the motion on it 
is chaotic and leads again to a pseudo-Anosov system, by the semicon- 
jugacy to a hyperbolic toral automorphism described by the substitution 
matrix R3 of (50). The Lyapunov exponents are again given by + log(2t+m)). 
Completely analogous statements can be formulated for/74, but we will not 
go into further details here. 

It is obvious that a more systematic structure is behind the common 
features of the above examples and we will now turn to its description. 

6. G E N E R A T O R S  FOR V O L U M E - P R E S E R V I N G  T R A C E  
M A P S  A N D  REVERSIBIL ITY  

In this Section we explore the prevalence of reversibility and other 
dynamical features in trace maps, as suggested by the above examples. We 
first do this in a constructive way by using the fact that trace maps belong- 
ing to a certain class of substitution rule, namely invertible substitution 
rules, can be built up from simple generator trace maps which are easily 
studied. Then, using the full power of the algebraic structure of such 
trace maps, we show how reversibility can be deduced directly from the 
associated substitution matrix. 

The importance of the theory of free groups to the understanding 
of ID nonperiodic chains obtained by substitution rules is well 
known. (1~ More specifically, as mentioned in Section 2, the set of all 
finite words w(a, b, a -  1, b - ~ ) constitutes the free group ~ generated by the 
two-letter alphabet {a, b}. Substitution rules are homomorphisms from 
to itself. Invertible homomorphisms are automorphisms  of ~ ,  and they 



Trace Maps 863 

Table II. Generators U, P, S for the Group (l)a of Automorphisms p of the 
Free Group 3wz, wi th  Their Corresponding Substitution Matrices and 

Trace Maps 

p R,, Fp 

(i) l ) U: b..., b ~ y 

yz -- x 

S: b._, b �9 " *  y 

2xy -- z 

form a group ~2 under the product (4). lnvertible substitution rules like 
(7), (46), (49), and (53) above are elements of ~2. Nielsen showed that the 
group ~2 is f i n i t e l y  generated by three automorphisms labeled U, P, and 
S. ~3~'6 In Table II we list these generating automorphisms together with 
their corresponding substitution matrices, and trace maps written with 
respect to the standard basis (x, y, z ) - -  (�89 �89 �89 where A 
and B are 2 x 2 unimodular matrices identified with the letters a and b. 

The existence of the three generators means that arbitrary invertible 
substitution rules can be written as words W ( U ,  P, S )  in U, P, and S. For 
example, in Table III, we do this for the rules (7), (46), (49), and (53). Via 
(9), trace maps corresponding to invertible substitution rules, which we call 
Nie l sen  trace maps ,  can be written as words in F v ,  Fe, and F s ,  and their 
substitution matrices can be written as a product of a string of the matrices 
Rv,  Re, and R s .  In fact, from (5) with (9), it follows that the inverse of 
a Nielsen trace map corresponding to an invertible substitution rule exists 
and is a Nielsen trace map, and that the corresponding (integer) substitu- 
tion matrix has an inverse which is also an (integer) substitution matrix. 
Consequently, the mapping from the invertible substitution rules to their 
trace maps is a homomorphism ~, (from ~2 to the group of all trace maps 
of the Nielsen class, which we denote by f#), as is the mapping ~o from the 
substitution rules to their substitution matrices ['from ~2 to the group 
GI(2, Z)].  Because the latter mapping is onto, it follows that Gl(2, 72) 

6 Note that the generator a of ref. 13 is S in our notation. 
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Table III. Some I nve r t i b le  S u b s t i t u t i o n  Rules and 
Their Representations As Words W(U, P, S) in the Nielsen 

Generators U, P, S of Table II ~ 

p W ( U , P , S )  

pt  : a --* b, b -.* ba P U T  

p 2 : a - - * b , b ~ b l a  P ( U T )  I 

P3: a ~ ( b a ) ' - i  b, b ~ (ba)"  b U S P ( U T ) "  P U T  
P4 : a -'-* ba, b --* (ba) t b P( U T )  t P U T  

a For brevity, we use T =  (SU-I)2: a--* b a b - J ,  b-.-* b. 

can be generated from Rv, Re, and Rs of Table II. The situation is 
summarized by the following diagram: 

p E ~ 2  

RoeGI(2,7/) x , F o e ~ P G I ( 2 ,  Z) 

(55) 

Note that one can also find a homomorphism X from GI(2, 3') to the group 
of Nielsen trace maps ff = ((Fv, Fe, Fs)) mapping Rv, Re, Rs onto Fu, 
Fe, Fs, respectively. Indeed this homomorphism g has kernel { _ ~ }, as can 
easily be checked. Consequently, the group ff of Nielsen trace maps is 
isomorphic with PGI(2, 7/) as also indicated in the diagram (55). <52,511 

Some general properties of the group .~ of Nielsen trace maps can now 
be deduced by looking at properties of the component generator trace 
maps (cf. also ref. 54 for a similar approach, where slightly different 
generators are used). The following properties for Fu, Fe, and Fs of 
Table II are easily verified: 

Proposition 11. The generator trace maps Fu, Fp, and Fs of 
Table II satisfy: 

1. All are volume-preserving: det d F t / = l ,  det d F e = - I ,  and 
det dFs = - 1. 

2. All preserve the Fricke character i(x, y, z) of Eq. (13). 

3. All fix the points (0 ,0 ,0)  and (1, 1, 1). 
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4. All commute with the symmetry group X of Eq. (20), specifically 

Fvotr~ =0"3oFu, Fvoff2=ff2oFv, Fvoas=tr~oF v 
(56) 

F v o a l = a 2 o F p ,  F e o a 2 = a l o F v ,  F e o a 3 = a 3 o F  e 

and Fs commutes with each a;. 

5. The generators Fe and Fs are involutions and commute. Their 
product is 

Fe o Fs = Fs o Fe = H, (57) 

where Ht is the involution in Eq. (30). The generators Fv and Fs 
satisfy 

Fso Fv = Gl (58) 

where G~ is the involution in Eq. (30). 

Because every Nielsen trace map is expressible as a trace map word in 
Fv, Fv, and Fs (and, of course, their inverses) via the homomorphism (9), 
properties common to the generators that are retained under functional 
composition will hold for all trace maps in the Nielsen class. We find the 
following result: 

Proposition 12. 
of Fu, Fe, and Fs. 

Consider any trace map F that is a composition 

1. It is a polynomial diffeomorphism of R 3 to itself with integer 
coefficients. 

2. It is volume-preserving and its linearization has determinant _ 1 
which coincides with the determinant of the corresponding 
substitution matrix R ~ Gl(2, 7/). 

3. It preserves the Fricke character [(x, y, z) of Eq. (13). 

4. It has fixed points (0, 0, 0) and (1, 1, 1). 

5. It keeps invariant the set ~ of Eq. (18). 

6. It commutes with the symmetry group X of Eq. (20). 

It should be stressed that statements 1-5 of Proposition 12 are cer- 
tainly known already in the literature/5' 11.6.17.54.51.1o.8) We list them here as 
a summary of properties of Nielsen trace maps, and to indicate the power 
of the generator approach. On the other hand, we are not aware of pre- 
vious consideration of the symmetries and reversing symmetries of Nielsen 
trace maps, as expressed by Proposition 11 (4, 5) and Proposition 12 (6), 
which will be a key point in this Section. 
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Prior to this, however, let us point out that the preservation of the 
Fricke character [ by all Nielsen trace maps has some important conse- 
quences. Proposition 12 (3) means that the sets J/~, defined by Eq. (14), 
and depicted in Fig. 1 are invariant sets for any Nielsen trace map F. Dif- 
ferent trace maps in this class will induce different dynamics on the family 
of 2D invariant surfaces, but certain dynamical features will be common to 
all. For instance, by elementary topological arguments, the "spherical" part 
of the surface in Fig. Ib will be separately invariant under any F, and the 
four cones will be mapped between themselves. Other dynamical features 
noted in the Fibonacci trace map that extend to the entire Nielsen class are 
described in the next two Propositions. 

P r o p o s i t i o n  13. Apart from the fixed points (0 ,0 ,0)  and (1, 1, l)  
and the elements of the invariant set ~ given by (18), which are all points 
at which V[ vanishes, all n-cycles of a Nielsen trace map F have the proper- 
ties (i)-(iii) of Proposition 1. The bifurcation conditions for curves of one 
period to intersect curves of another period are described by the bifurcation 
theory of OP or OR area-preserving mappings. In a cascade of such bifur- 
cations, the sequence of/l-values of the level sets ~t'~, where intersections 
occur scales according to the universality class of area-preserving 
mappings. 

This Proposition follows directly from the results of Proposition 1 and 
the Appendix. These show a local conjugacy between F and a one- 
parameter 2D measure-preserving mapping, so that intersections of curves 
of periodic orbits are expected precisely where Proposition 1 allows them 
to happen} 45j As we did with the Fibonacci map [cf. (39)], the local con- 
jugacy can be extended to a small neighborhood of a cascade of intersec- 
tions lying wholly on upper or lower branches of the invariant. This may 
require taking a power of F and/or restricting to high-period cycles. As 
period-doubling and n-tupling become spatially-localized processes if this is 
done, one always expects to be able to confine to one set of branches. Note 
that this conjugacy is possible because of the invariance of [ and is inde- 
pendent of reversibility. Also, as mentioned at the end of Section 4, the 
presence of a commuting group for a Nielsen trace map may give rise to 
some anomalous bifurcation behaviorJ 441 

As with the Fibonacci map and the other examples above, we can also 
characterize the motion on ,#o. 

P r o p o s i t i o n  14. Let F, be a Nielsen trace map corresponding to 
the invertible substitution rule p with associated substitution matrix 
Rp ~ GI(2, Z). Then on o#o we have 

Fp].,r o S = So Rp (59) 
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where the parametrization S is given by (22) on the compact part .At'~, and 
on j~cgc by S with cos(2rt~9) replaced by cosh(oq). 

Assume Rp is hyperbolic. Then the motion on Jt'~ is that of a pseudo- 
" tr " Anosov mapping, the number of fixed points of F'f', on ~#o is I (R~,)I, there 

are periodic orbits of every period, and the eigenvalue spectrum of an 
n-cycle off the pinches is {1, _+2~, +21"}({1,  __+2~, ~2~"}) ,  where 2p is 
an eigenvalue of R~, and Fp is OP or OR with n even (OR with n odd). 

,,c ~,(E, .r.,. ~:) The motion on ~r the noncompact cones ~o , Sx~y~.= 1, is 
unbounded in forward and backward time, except for the images under the 
parametrization on the cones of the stable and unstable manifolds of the 
linear hyperbolic mapping generated by Rp. 

If R~,eGI(2, E), Rpr ++J, is not hyperbolic and does not have 
k t r (Rp)= +2 with det(Rp)= 1, then Fp is of finite order, i.e., Fp-Id with 

k = l , 2 ,  or 3. 

Proof. Proposition 14 rests upon showing the semiconjugacy (59). 
This result follows immediately from the fact that, without loss of 
generality, on Jt'o we can consider the substitution rule p to act on 
diagonal 2 x 2 unimodular matrices A and B (cf. the Appendix in ref. 8 and 
ref. 56). Given (59), it follows when Rp is hyperbolic that the dynamics of 
F e on ~t'~ is equivalent to the quotient of the hyperbolic toral 
automorphism LR,, induced by R e, by the identification of (31, 02) and 
(-~9 I, -32) .  Hence F acts as a pseudo-Anosov mapping and the results of 
ref. 28 can be applied, exactly analogous to the proof of Proposition 3. The 
dynamics of Fp on J /g '  is deduced in a similar way to the proof of Proposi- 
tion 6, i.e., determining it on ~g~o + + § i and then using the knowledge of the 
way Fp commutes with _r. Finally, R e nonhyperbolic and not of the type 
t r (Rp)= +2 with det(Re)= 1 means Rp is traceless with det(Rp)=-T-1 
(whence of order 2 or 4) or t r (Rp)= +1 with det(Rp)= 1 (whence of order 
3 or 6). The only other elements of finite order are _+1. Via the 
homomorphism Z of (55) with kernel {_+1 }, we find the corresponding 
Nielsen trace maps are of finite order { 1, 2, 3 }, and no other finite orders 
are possible. �9 

We turn now to the action of a Nielsen trace map on the symmetry 
group Z' of (20). In addition to Proposition 12 (6), we see even from the 
previous Proposition that it is desirable to determine this action explicitly. 
As discussed above and below Proposition 2, the action of Fp on Z" will 
induce a permutation I r E S  3 on the elements {a~, a2, 0"3}. In turn, this 
will have the dynamical effect of linking periodic orbits of Fp and their 
corresponding eigenvalue spectra. Which permutation is induced can in 
fact be found from the corresponding substitution matrix (cf. also ref. 42): 
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Proposition 15. A Nielsen trace map Fp with substitution matrix 
Rp = (,'~ 3) commutes with trl of (20) if and only if b even and d odd, with 
tr 2 if and only if a odd and c even, and with tr~ if and only if both (a + b) 
and (c + d) odd. 

Proof .  Nielsen trace maps and all transformations in Z" preserve the 
level sets of ~f(x, y, z), in particular, ~t'~. On this surface, we have the 
parametrization S of (22). Hence we get the semiconjugacies (59) for Fp 
and (40), (42) for the a's which provide simple 2D representations of these 
mappings. Now, F p o t r l = a l o F  p on ~t'~ if and only if S o ( R p o f ~ , ) =  
So (f, ,  o Rp), which gives b even and d odd, etc. Finally, as we know from 
the generators for the Nielsen trace maps, the commutation property 
extends from Jt'~ to the entire space. �9 

Of course, the way that Fp permutes the elements of ~ of Eq. (18), and 
the cones of Jt 'g c attached to them, is a reflection of the way it permutes 
the elements of the group Z'. The action of F on ~ is also studied in ref. 56 
with an implicitly equivalent result to Proposition 15, but the conclusions 
for the existence of global symmetries are not drawn. 

We now consider the reversibility of arbitrary Nielsen trace maps. 
Following the study of other properties above, we start by considering the 
reversibility of the generator trace maps Fu, Fe and Fs.  This also provides 
a partial characterization of trace map words. For brevity from this point 
onward it is convenient to introduce an easier notation for the generator 
trace maps via 

F v --* u, Fe  I-' p, F s ~ s (60) 

We then consider trace map words w(u, p, s) which are strings in the letters 
u, p, s and their (integral) powers, where the letters are identified with the 
generator trace maps of Table II via (60). Juxtaposition of letters in a word 
corresponds to functional composition of the trace maps, so that we drop 
the "o" symbol. 

P r o p o s i t i o n  . Dividing trace map words w(u, p, s) into one-, two-, 
and three-letter words, then: 

1. All one-letter words are reversible with reversing symmetry s. In 
particular, w(p )=  p or ld, w ( s ) = s  or Id, and the word w ( u ) =  u", 
n E Z, satisfies 

u"s = su -"  (61) 
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. A two-letter word w(p, s) is equal to one of the involutions p, s, 
or ps and so is reversible. A two-letter word w(u, s) is equal to an 
involution of the form su", n e Z, or to some power of u, and so is 
reversible. 

ProoL For the one-letter words, s is an involution and any involu- 
tion is trivially reversible with respect to itself. Then use the fact that 
p= (ps)s and u=s(su) and that ps and su are also involutions from (57) 
and (58), respectively. Because u is reversible with reversing symmetry s, so 
is u", which gives Eq. (61). For the two-letter words w(p, s) use the fact 
that p and s commute and are involutions to separate the two types of 
letters within the word and reduce their number. Similarly, for w(u, s), use 
(61) to separate the two types of letters, and then reduce the string of s's 
to s or e, the identity letter. �9 

The trace map words not considered in Proposition 16 are the two- 
letter words w(u, p) and the general three-letter words w(u, p, s). These 
remaining possibilities are closely related because w(u, p, s) can always be 
reduced to a two-letter word w(u, p) or to its composition with s by means 
of (61) and the commutativity of p and s. Even without the use of 
reversibility as in the above proposition, s could always be eliminated 
from a trace map word w(u, p, s) because it is expressible in terms of the 
generators u and p via 

s = upu - ~pup (62) 

That is, the group ff of Nielsen trace maps is generated by u and p alone, 
as is PGI(2, E) by the equivalence classes of the two matrices Ru and Rp 
of Table lI; compare ref. 52. Nevertheless, using reversibility relations 
between the generators to pull the s's together in the word and annihilate 
them in pairs leads to simpler words than using (62) to substitute for every 
occurrence of s. We think it is worthwhile for historical and practical 
reasons to continue considering the set of three generators of ft. 

Proposition 16 then highlights the need to consider the reversibility of 
the two-letter words w(u, p) and the three-letter words formed by com- 
posing them with an s. This is nontrivial even given the reversibility of the 
component generator trace maps p and u. Most of Proposition 12 followed 
by just noting which properties of the generators were retained under 
composition. For reversibility, however, the situation is more complicated, 
as the following additional property of reversible mappings indicates: 

R8 The composition of two reversible mappings L and M which 
share a reversing symmetry G is a reversible mapping, but 
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typically the composition L o M  or M o L  does not have G as a 
reversing symmetry. The latter is true if and only if L and M 
commute. 

Because p and u do not commute, a word w(u, p) is not reversible with 
respect to s even, though p and u are. Despite this, a word w(u, p)  may still 
of course be reversible with a reversing symmetry different from s. For 
example, although it is somewhat ad hoc, we can systematically consider 
the reversibility of successively more complicated short words w(u, p)  and 
w(u, p)  s. For instance, the following words w(u, p)  that start with p are the 
products of two bracketted involutions as indicated: 

pu i = (ps)(su j) 

puJp = (puJps)(s) 

puJpu * = (puips)(suk) (63) 

puJpukp = ( puJpu~ps )( psu* - ip ) 

puJpu*pulp = ( puJpu*puJps )( pu j -  Isp ) 

The decomposition into involutions of these words is aided by the fact that 
if L has reversing symmetry G, then Lio G = Go L - ;  is also a reversing sym- 
metry (cf. R1, Section 4). This allows longer and longer involution words 
to be constructed, e.g., the reversibility of u with respect to s shows that su j 
is an involution [cf. (61)], and the reversibility of pu j with respect to ps 
shows that puips, puJku~ps, and pspuJpu i are also involutions. 

The reversibility of the first few words w(u, p)  starting with u j follows 
by "sandwiching" each of the above words beteen p and p -  t = p and using 
property R3 of Section 4. Similarly, some short reversible trace map words 
of the form w(u, p ) s  include 

puJs = (p)(uJs)  

puips= (puJps) (64) 

pu-ipukps = ( puJpu -Jp )( puJ + kps ) 

Already missing from the natural progression of the words in the two 
short lists above are words w(u, p) like 

wl(u, p)  = puipu*pu I (65) 

and words w(u, p ) s  like 

wj(u, p, s) = puJpuks (66) 
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whose reversibility appears harder to decide for completely arbitrary 
powers of u. Some special cases can be seen to be reversible, e.g. for the first 
word, 

puJpuJpuZ = ( puJpuJps )( su I) 

puJpukpu k =  ( ps ) ( suJpukpu k) (67) 

pu - l puJpu = u -  l ( p suJ -  t p ) u 

and for the second word, 

puJpuJs = (puJpuJps)(p)  (68) 

Note that in the last case of (67), we use p u - t p =  u - l p s u  -~, which follows 
from Eq. (62). 

Nevertheless, the above constructive approach recognized many 
reversible trace maps and involutory trace maps which act as reversing 
symmetries for them. In particular, it allows us to see by inspection why 
the substitution rules (7), (46), (49), and (53) considered above led to 
reversible trace maps with the reversing symmetries previously noted. In 
Table IV, we give the trace map words w(u, p, s) corresponding to these 
rules, which follow from their words W ( U , P , S )  in Table lII, the 
homomorphism (9), and the simplifications that can be made to condense 
the trace map word using Proposition 16. Noting (57) and (58), we under- 
stand the prevalence of reversibility in these examples with respect to G t or 
H~. Also listed in Table IV is the action of each example on the symmetry 
group Z'. 

Table IV. Trace Map Words w(u, s) fo r  the  Trace 
Maps Corresponding to  the  Subs t i t u t i on  Rules of 

Table III, w i t h  Their Transformation under 
the Group ~r of Proposition 2 

Fp w(u, p,s) F,o ,~ 

Ft  p u  FI oa~ = try_ t ~ F~ 

/ o d d :  s ame  as F t 
F ,  

n vu t  I even:  s a m e  as p 

_ inu,,,nu rn odd :  s ame  as p 
F3 SU 

m even:  s ame  as s 

F4 pulpu I o d d :  s ame  as F~ - j  

! even:  s ame  as u 



872 Roberts and Baake 

A more systematic approach can be taken to asking what trace maps 
in the Nielsen class are reversible with respect to reversing symmetries 
which are themselves Nielsen trace maps. Because of the homomorphism X 
in (55), we can link a trace map F directly with a substitution matrix, now 
denoted Re. 

P r o p o s i t i o n  17. Let F be a Nielsen trace map and let 
R e =  (ca bd) eGl(2 , 7/) be the corresponding substitution matrix. Then F is 
reversible with a reversing symmetry that is also a Nielsen trace map if and 
only if 

(I)  a + d = 0  (in which c a s e F  2 = I d )  or 

(2) there is a solution of a(a-d)+flc+Tb=O, ~,fl, TeT/, with 
~2+f l7= +1. 

Proof. The proof is straightforward if one observes that { +~ } is the 
kernel of the homomorphism g from the matrix group GI(2, 7/) to the 
group (q of trace maps of the Nielsen class; cf. (55). Then the condition 
Fo G o F =  G can be calculated with 2 x 2 matrices modulo the kernel, i.e., 
we have to solve RF.RG.RF= +RG with RF, RGeGI(2, 7/) and R 2 =  +~ 
[equivalently, solve reversibility of matrices in PGI(2, 7/)]. To do so, we 
observe that-- in Gl(2,7/)--nontrivial involutions (i.e., R~=~ ,  but 
Rc~: +~) are only possible for d =de t (RG)=  - 1  and are of the form 
(i -P~) with ~2+f ly=  1, while anti-involutions (i.e., R 2 = - 4 )  have the 
same matrix form but require d = 1, i.e., ~2+/37 = -1 .  A direct substitution 
into RF" Re" RF = +Ra results in the statement of the proposition. Finally, 
the substitution matrices R6 involved have to be put into a (uniquely 
defined!) trace map to obtain the necessary involution for reversibility. �9 

Note that the "only if" part of the above Proposition can also be 
deduced by considering the dynamics induced on ~ .  Because Nielsen 
trace maps preserve this surface, a necessary condition for reversibility 
within the Nielsen class is reversibility on this particular surface. 
Consideration of the latter is made simpler using the representation (59) 
on Jr%. The reversibility relation FoGoF=G for two trace maps F 
and G then induces the relation So (R F. RG " R e )  = So  R 6 ,  i.e., 
Rr.R~.RF= +RG. We showed how this worked for the Fibonacci 
mapping F~ in Section 3; cf. (40) and the surrounding discussion. From 
Proposition 17 we observe that this mapping is reversible with a trace map 
with substitution matrix (o -~). From (41), we see that this matrix 
corresponds to the representation of H~ on dt'~. 

Before we come back to the general case, let us state two consequences 
of Proposition 17. 
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Proposition 18. Let F be a trace map with substitution matrix 
F= (~ bd)e Gl(2, Z). Then, any of the following conditions is sufficient for 
reversibility: 

(1) a = d o r  a = - d .  

(2) b = c o r b = - c .  

(3) b or c divides ( d - a ) .  

Proof. A direct substitution shows that R e =  ( o  ~ o) gives the case 
a=d. Now, a =  - d  is case (1) of Proposition 17, while R 6 =  (o • yields 
condition (2). Finally, if h i ( d - a ) ,  one can choose c t= l ,  f l=0 ,  and 
y = ( d - a ) / b  in Proposition 17, while c l (d - -a )  requires ct = 1, ~ = (d -a ) / c ,  
and ? = 0. �9 

P r o p o s i t i o n  19. Any Nielsen trace map F of finite order is 
reversible. Also, F is reversible if the eigenvalues of the corresponding 
substitution matrix Rp are rational. 

ProoL Finite order in PGI(2, 7/) means order 1, 2, or 3; compare 
ref. 52 and Proposition 14. The statement is trivial for orders 1 and 2. 
Order 3, in turn, requires ReGl(2,  7/) with t r (R)=  +1 and d e t ( R ) = l .  
W.l.o.g., we can choose tr(R) = 1, i.e., R = (ca i b_,), where bc = a(l - a ) -  1. 
Next, we observe that the greatest common divisor (gcd) of 2 a - 1  and 
a 2 - a + l  is either 1 or 3, whence either g c d ( 2 a - l , b ) = l  or 
g c d ( 2 a -  1, c ) =  1. In either case, it is clear how to write down the general 
solution of the linear Diophantine equation in Proposition 17 (2). If one 
then inserts this into the remaining nonlinear Diophantine equation, one 
reduces the problem to the question of whether 1 is representable by an 
integer binary quadratic form of discriminant - 3 ,  the answer to which is 
always yes because the corresponding class number is one. (53) 

Rational eigenvalues for Rr  means tr(R~:)=0 with de t (Re)=  - I  (in 
which case F is an involution) or tr(Re) = +2 with det(Rr) = 1. The con- 
jugacy classes [in GI(2, 7/)] of the latter case (4~) are faithfully represented 
by the matrices (~0 t ~:"l) with m e  l~ 0. The corresponding trace maps are 
obviously reversible by Proposition 18 (l), and reversibility is preserved 
under conjugacy. �9 

Though the criteria of Proposition 18 seem a bit restricted, it will 
nevertheless turn out that - -up to conjugacywithin the set of Nielsen trace 
maps--they completely characterize reversibility; see refs. 42 and 55 for 
details. These simple criteria allow us to see immediately the reversibility of 
all our examples in Section 5, and the corresponding reversing symmetries 
are obtained from R~ via the generators of Table II. Furthermore, the 
appearance of integral quadratic forms in the proof of Proposition 19 is 
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not at all an accident. The general case (2) of Proposition 17 can be 
reformulated as a representation problem of _ 1 by (generally indefinite) 
quadratic forms. This results in a complete decidability of the reversible 
cases, but a detailed description is beyond the scope of the present article 
and is given in ref. 42. 

One example that escapes both conditions of Proposition 17 is (~ 14)- 
Notice that this belongs to the set of substitution matrices 

- ( j k  + 1)) 

corresponding to the trace map words w(u, p, s) of (66), whose reversibility 
could not be decided in general via the constructive approach. Conse- 
quently, the trace map pu3pu-Ss= pu3psu 5 is not reversible in the class of 
Nielsen trace maps. This trace map is similar to the Fibonacci map in that 
it commutes with no elements of Z', but its cube commutes with all 
elements---consequently, it keeps (I, 1, 1) fixed and the set ~ of (18) is a 
3-cycle. 

We have mentioned weak reversibility in Section 4 as a generalization 
of reversibility. Within the class of Nielsen trace maps, we can state the 
following result: 

Proposition 20. Let F, G be Nielsen trace maps with FoGoF=G. 
Then G 2 = Id or F 2 = 7d, and in both cases F is reversible. In other words, 
weak reversibility automatically implies reversibility within the class of 
Nielsen trace maps. 

ProoL This is again a statement about PGI(2, 77) matrices. Starting 
from integer 2 x 2 matrices with R F. RG = +Re. RF 1 as above, one finds 
either the cases of Proposition 17 or the condition R ~ =  +_~. In the former 
case, one has R ~ =  +4 and thus GZ=Id, while in the latter case, F itself 
is an involution and hence trivially reversible. �9 

So far, Propositions 17 and 20 restrict the search for reversing sym- 
metries to involutions that are Nielsen trace maps themselves, i.e., are 
elements of ~. As such, these reversing symmetries will have all the proper- 
ties detailed in Proposition 12, e.g., they preserve the Fricke invariant, 
(0,0,0),  (1, l, 1), and the set ~ of (18) are fixed, and they commute 
with the group 2". Nevertheless, obviously other involutions that are not 
themselves trace maps could act as reversing symmetries in this case. 
That is to say, an even larger class of mappings than those identified in 
Proposition 17 could be reversible. 

We will now enlarge the search for reversing symmetries to the group 
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d generated by all elements of Z and (#. This will turn out to be a very 
pertinent set to look at, and it has the following structure: 

Proposition 21. The group Z is a normal subgroup of.~r and we 
have d = Z ~)s f#, i.e., d is the semidirect product of its subgroups Z 
and f#. 

,~ Z normal in ~r means a X a - l =  Z for all a ~ d ,  which is an 
immediate consequence of Proposition 12 (6). On the other hand, a i e Z  
cannot be a trace map, because it does not fix the point (1, I, 1); cf. 
Proposition 12 (4). Thus S c~ f~ = {Id }, whereby the statement follows. �9 

Let us remark that the result that Z is a normal subgroup of d is just 
a more algebraic expression of the fact that every Nielsen trace map 
commutes with Z. The action of a trace map F on Z is given by 
FoaioF -~ =a~ru~, where zt F is the permutation deduced using Proposi- 
tion 15. This way, the structure of the semidirect product is completely 
known. 

The set d turns out to be identical with the set of all polynomial map- 
pings of R 3 o r  C a (with real or complex coefficients) that leave I(x, y, z) of 
(13) invariant/5~ Significantly, the fact that d is a group means that 
possession of this property by a polynomial mapping is sufficient to 
guarantee automatically that the mapping is invertible and that its inverse 
also preserves L The subgroup (#= PGI(2, ~) can be specified by fixing 
(1, 1, 1), i.e., ( 9 = { a e d l a ( 1 ,  1, 1)=(1 ,  1, 1)}, while Z together with the 
elements (x, y, z) ~ (y, x, z) and (x, y, z) ~ (z, x, y) from fg generate the 
full tetrahedral group, Td, with 24 elements. They are the only linear (in 
fact, the only affine) transformations that leave/~invariant. They constitute 
what one would call the ordinary symmetry group of the level sets. 

Considering reversibility of Nielsen trace maps with respect to revers- 
ing symmetries in d ,  we note that elements a o g, where a ~ Z and g ~ f#, 
need not be involutions, because a and g might not commute. So a priori 
we should consider weak reversibility with respect to elements of d ,  but 
then we find: 

Proposition 22. Fef9, F2#Id,  is .weakly reversible with some 
element G ~ r  where G = a o g  with a e Z  and gef# ,  if and only if F is 
reversible with g ~ c~ and commutes with a. 

Proof. The ."if" part of the statement follows from the weak rever- 
sibility property that the composition of a weak reversing symmetry and a 
commuting map is again a weak reversing symmetry. Consider the "only 
if" part. Let Fo G = G o F -  ~ and G = a o g. Then, 

Foao g = ( F o a  o F- l )o(Fo g ) = a o ( g o  F - l )  

822/74/3-4-27 
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But from ~r =27 t~)s H we know that a o g =  a 'o  g'  implies t r= a '  and 
g =  g '  (factorization is unique). Since F o a o F  -1 eX ,  we have to conclude 
F o g =  g oF -~ and F o a = a o F .  The first condition gives weak rever- 
s ib i l i ty -and  thus reversibility, see Proposition 20--and the second one 
shows that a is a symmetry of F. �9 

This Proposition relates to our earlier observation in Section 4 that F~ 
possesses the weak reversing symmetries GI o tr, and G1 o a3, and the revers- 
ing symmetry G~oa2, all of which belong to ~r but that these are not 
(weak) reversing symmetries for F~. We can see now that the latter would 
only be possible if F~ itself commuted with try, a2, or a3. Proposition 22 
then makes it easy to create Nielsen trace maps F that are not (weakly) 
reversible with respect to G e ~ ,  but their second or third power is. 
Provided F is reversible with respect to g in the Nielsen class via Proposi- 
tion 17 and does not commute with every element of X, then take 
G = go try, where F does not commute with a/. 

One obvious question is how general the above results are w.r.t, failure 
of reversibility. From Proposition 19 we know that a nonreversible Nielsen 
trace map F must have a hyperbolic substitution matrix RF. Let us now 
briefly discuss some properties that a more general (weak) reversing sym- 
metry (outside ~r must possess. The most general class of transformations 
that are meaningful in this context are homeomorphisms. Hence, let us 
consider G o Fo G -  ~ = F -  ~ with homeomorphism G and hyperbolic trace 
map F. 

From R5 of Section 4, if F is an invariant set of F, then so is GF. In 
particular, .,r is an invariant set which contains a dense orbit (due to the 
pseudo-Anosov structure). Consequently, G,,g~ must have the same 
property and must be of the same topological type. Furthermore, (0, 0, 0) 
is an isolated fixed point of F, which is then also true of G(0, 0, 0), and a 
similar situation is met by the pinches, ~ .  A couple of these considerations 
together with the connectivity properties of the level sets and the potential 
consequences of transversal deformations indicate that the following 
situation is, at least, typical (a proof or decision would require a more 
complete knowledge of the closure of possible invariant sets): 

H1 G preserves the foliation of R 3 by the surfaces {J/u}. In par- 
ticular, it maps the surface ~'u, /a > 0, to J/u., for some /a '>  0. 
Similarly, G can at most permute the compact sets .~r 

n r  --1 < p < 0, and the noncompact cones belonging to J l u , / a  < 0. 

H2 G leaves og o invariant, and in particular .,r162 

H3 The point (0 ,0 ,0)  is fixed by G, and so is necessarily a 
symmetric fixed point of F. The set of four "pinches" on J /~ ,  
given by ~ of (18), is also fixed by G. 
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Let us therefore continue our discussion restricting to homeo- 
morphisms G that obey the three properties above. But then we find: 

P r o p o s i t i o n  23. Let F be a Nielsen trace map with (weak) revers- 
ing symmetry G. Let G be of finite order, map R3 into itself, and have 
properties H l-H3. Then G Jr' u = JCu and G preserves the Fricke character i 
of (13). If, in addition, G is a polynomial mapping, then G ~ ~r = L" Q s fq. 

Proof.  The action of G in permuting the level sets J/~ induces a 
ID real mapping f : = / ~ - - * p ' = f ( / ~ )  via GJlu=Jgu, .  Because G is a 
homeomorphism, f is a homeomorphism and the invariance of Jr and 
de_ 1 under G further imply that f ( 0 ) =  0 and f ( - 1 ) =  -1 .  It follows that 
f :  R --* R is an increasing function. Because a priori G may permute the 
cones and balls of Jr' u, p < 0, in different ways, it is conceivable that in this 
range we may need to consider different 1D homeomorphisms. In any case, 
G k = Id in •3 implies f k  = Id in R, and the only possible increasing 1D 
homeomorphism satisfying the latter is f = Id. Hence G~g u = ~t'u, Vp, which 
implies i(Gx)=~f(x), Vxeg~ ~. The second statement of the proposition 
follows immediately because, as mentioned above, ref. 51 has shown 
that the set of real polynomial mappings that leave ~f invariant is 
precisely ~r �9 

The previous proposition highlights the importance of the set ~r if we 
confine our search for reversing symmetries to polynomial mappings of 
finite order. We can bring together some of the above results in the 
following chain of implications: 

F (weakly) reversible with polynomial mapping G 

of finite order and properties H l -H3 

GE~r (Proposition 23) 

F reversible in ff (Proposition 22) 

RF satisfies Proposition 17 

(69) 

We see then that a Nielsen trace map whose related substitution 
matrix does not satisfy one of the two conditions of Proposition 17 is not 
(weakly) reversible with any polynomial (weak) reversing symmetry of 
finite order which also respects H1-H3. From above, such an example is 
the trace map pu~pu-Ss=  pu3psu 5 with substitution matrix (~ 14). 

We are led to ask more generally how to decide if a given Nielsen 
trace map is reversible with an arbitrary nonpolynomial (weak) reversing 
symmetry. 

The above discussion suggests a couple of practical ways to test 
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Nielsen trace maps for irreversibility. The first is to check the eigenvalue 
spectra of the linearized trace map at (0, 0, 0), (1, 1, 1), and the cycles that 
make up the set ~ ,  recalling that the spectra of symmetric cycles must 
include {_1} .  The spectrum can be calculated from combining the 
linearizations of the generator trace maps, using the form of the trace map 
word. Second, the number of odd-period cycles on OR Nielsen trace maps 
on o#~ can be explicitly found using the traces of powers of the substitution 
matrix via Proposition 14. We can combine this knowledge with the 
generalization of Proposition 8 of Section 4: 

P r o p o s i t i o n  24. If a Nielsen trace map F is OR with associated 
hyperbolic substitution matrix Rr  and is also (weakly) reversible with 
(weak) reversing symmetry G which is a diffeomorphism and respects 
properties H1-H3,  then all odd n-cycles on Jt '~ off the "pinches" ~'  are 
asymmetric. In the event of reversibility, where G is an involution, the 
number p,, of such n-cycles is even if n >/5. 

ProoL If F is OR, we know from Proposition 14 that each odd- 
period orbit on Jt '~ which does not contain one of the four "pinches" has 
an eigenvalue spectrum different from { l, 1, - 1 }, which is necessary for a 
symmetric odd-period orbit. Hence such an odd n-cycle is asymmetric and 
its image under G also lies on Jt '~ off the "pinches" via properties H I - H 3 .  
If G is an involution, then each odd n-cycle and its image are a G-invariant 
pair. If n/> 5, there are no odd n-cycles within the set of pinches, and hence 
the total number of odd n-cycles on Jt'~ is the sum of such pairs. �9 

Note that there is an explicit expression for p ,  above, analogous to 
that for the Fibonacci trace map in (28), namely 

1 
P" n P Itr(R~-)l (70) 

I 

The above Proposition is then a statement of the divisibility of this expres- 
sion by 2 when n/> 5 in the case of an O R  reversible trace map. It turns 
out that, as a test for reversibility in this case, this divisibility property is 
vacuous because it always holds/571 Similarly, using the above implications 
on the linearizations of (0, 0, 0) and the pinches to find possible irreversible 
candidates among trace maps also appears to be a "nontest." 

The significance of the first part of Proposition 23 is that it shows, for 
reversibility and weak reversibility with G of finite order and with proper- 
ties H1-H3,  that one has a 2D (weakly) reversible mapping induced on 
each level set of i because G preserves each such set. Consequently, one can 
test for irreversibility of the trace map on any of these surfaces. Testing 2D 
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mappings for (weak) reversibility and identifying nonreversible mappings 
has been discussed in refs. 12 and 58. The problem is particularly subtle if 
the mapping is OP and area-preserving. However, if the mapping is OR, 
the problem is much easier because possible symmetric periodic orbits are 
atypical, and then possible asymmetric periodic orbits would need to have 
reciprocal eigenvalues. We see from above that there are many OR Nielsen 
trace maps. It seems that, within this class, examples can be found that 
are not reversible with respect to any (not necessarily polynomial) G. (42) 

Numerically, it is useful to exploit again the solvability of the dynamics on 
Jt'~ and to "track" periodic orbits off this surface. 

7. G E N E R A L I Z A T I O N S  IN H I G H E R  D I M E N S I O N S  

Having presented in some detail various 3D trace maps that are both 
reversible and possess an invariant, we will now consider some higher- 
dimensional generalizations. We stress that these generalizations are chosen 
from a dynamical point of view, incorporating the two features of an 
invariant and of reversibility which we have concentrated on above. Our 
generalizations are not necessarily related to the recent pursuit of higher- 
dimensional trace maps; see ref. 59 and references within. Also, trace maps 
of n-letter substitution rules for n > 2  do not seem to have invariants 
analogous to the Fricke invariant I(x, y, z). t6~ 

Considering the mapping 

(i) F: ~ x (71) 

Y 

one finds that F is reversible with involution G, G(x, y, z) = (z, y, x), if and 
only if f (x, y) is symmetric, i.e., if and only if 

f ( y ,  x ) = f i x ,  y )  (72) 

This is a rather large class of reversible mappings and contains the 
Fibonacci trace map of (12) via f (x ,  y ) =  2xy. (We have interchanged the 
roles of x and z hare, which obviously does not matter.) There we also had 
an invariant, namely i(x,  y, z) = x 2 + y2 + z 2 _ 2xyz - 1. But this is not the 
only such example in the class defined by Eq. (71), because also 

f ( x ,  y ) = a + b . ( x  + y ) + c . x y  (73) 
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leads to a reversible mapping (with the same G nota bene), and one can 
directly verify the invariance of the following expression7: 

I ( x , y , z ) = x 2 + y Z + z Z - a . ( x + y + z ) - b . ( x y + y z + x z ) - c . x y z  (74) 

Note that we have dropped now the constant contribution which was kept 
in i above for the sake of compatibility with other articles. 

A closer look shows that one can easily rewrite the expressions (73) 
and (74) with elementary symmetric polynomials. For  m variables, they are 
defined as 

~S Xn(k) a~ ' ) (x l  ..... x " ) = l !  ( m - - l ) !  ~ .. l 
(75) 

where S,, denotes the symmetric or permutation group�9 The polynomial 
tr~ ") is homogeneous of degree /. Explicitly, we have a~o")=l, 
a ] " ) = x l + . . . + x , , ,  a t 2 " ~ = x ~ x 2 + x , x 3 + . ' . + x , , _ , x m ,  etc., up to 
a~m)=x l  . . . . . x , , ;  for details we refer to ref. 61. 

Let us now consider the following generalization of Eq. (71) defined by 
a mapping F: ~n ~ R", n >/2, via 

F: 
(i l) 2 

\ x . /  

I f (x  I ,..., x . _  l ) -- x . \  

) Xl 

Xn-  1 

(76) 

where f :  R " -  ' ---, R is a scalar function of n - 1 variables. Note  that F is 
volume-preserving, and orientation-preserving (-reversing) if n is even 
(odd). That  mappings with invariants exist in this class can directly be seen 

2 + x 2 =  Ixl 2 invariant. from F with f =  0, which leaves l ( x l  ..... x,,) = x I + . . .  
If we extend the involution considered for (71) to 

(i l) Cx :l/ G: x2 ~ (77) 

,, \ xl / 

we can show the following: 

7 This observation is due to G. R. W. Quispel. 
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Proposi t ion 25. The mapp ing  F of (76) is reversible with involu- 
tion G of (77) if and only i f f ( x ~ , x 2  ..... x . _ l ) = f ( x . _ l , x . _ 2  ..... x l ) .  The 
subclass of  such reversible mappings  with 

f ( x l  ..... x . _  1) = tr l"-t~(xl  ..... x . _  t) (78) 

and 0 ~< l ~< n - 1, also has an invariant  given by 

l ( x l  x . )  = [xl 2 -  ,r(") t,- X . )  ( 79 )  ,..., Ul+ I I .~ 1 , . . . ,  

Proof .  One shows the reversibility by direct computa t ion  of 
F o G o F =  G. For  a proof  of the invariance of (79) by the subclass defined 
through (78), we need the following identity (0 ~< I~< n - 1  ): 

tr(.) t , ,  . t r l " - l~(y  2 ..... y . )+ t r l+- l l ) ( y2 , . . . ,  y . )  (80) t+ i~.~ 1,---, Y.) = Yl 

which follows immediately from the definition of the elementary symmetric  
polynomials.  We then obtain, with Ixl 2 =x~  z + ..- + x .  z, 

I ( F ( x t  ..... x , , ))  

= { a l " - ' ) ( x ,  ..... x .  l ) } 2 - 2 x . . t r ~ " - l ~ ( x l  ..... x . _ l ) + l x l  z 

~ ( n )  / ' ~ ( n - - 1 ) / y  X n _ l ) _ _ X n ,  X I X 2 , . . . , X n _ l )  - -  W l +  1 ~ 1  k.,~l , . . . ,  

= {a~"- I ) (x  I ..... x . _  i ) }  2 - 2 x . .  t r l " - l ' ( x  I ..... x._ 1)+ Ixl z 

- { o l " - l ~ ( x ,  ..... x . _ l ) - x . } . o ~ " - l ' ( x l  ..... x . _ , )  

(n--  -o1+11~(xl  ..... x . _ t )  

= I x l Z - x . ' o l " - l ~ ( x t  ..... x . _ l ) - a ~ " + q ' ) ( x l  ..... x . _ l )  

= ixl2_..r t,. x . )  ~ ' / +  1~.~1 ' " "  

This proves the invariance of I in (79) under F. �9 

Now,  looking back to Eq. (74), one could suspect that  a linear com- 
binat ion of di f ferent  elementary symmetr ic  polynomials  is also possible, 
and if we define 

n - - I  

f ( x l  ..... x . _ , ) =  Z (X/ '0"~ n - I ) ( x l  . . . . .  Xn--l)  (81) 
I = 0  

where the ctt are arbi t rary constants,  the corresponding F is reversible 
according to Proposi t ion 25 and still possesses an invariant,  namely 

n - - I  
(n) 

I ( X  1 . . . . .  Xn)=Ixl 2 -  ~ =,.,r/+t(X I ..... Xn) (82) 
I = 0  
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The proof can again be given through a direct calculation as above, and we 
omit it here. We summarize our findings in the following result. 

P r o p o s i t i o n  26. The mapping F:R"--*R",  n>~2, defined by 
Eq. (76) with f chosen according to Eq. (81), is reversible with G of (77) 
and has an invariant given by Eq. (82). 

For any scalar function of n - 1 variables, we can--via  symmetrization 
w.r.t, the permutation 

n 1 n - 2  -.. 1 

---construct a reversible mapping according to Proposition 25, but we will 
in general not find an invariant. Of course, the class of reversible mappings 
which also have an invariant may be larger than that indicated by 
Proposition 26. 

It is worth noting that many of the properties we identified for 3D 
mappings with an invariant extend trivially to n dimensions--in particular, 
the result of the Appendix, which gives a local transformation to an effec- 
tive ( n -  1)-dimensional map depending on a parameter which is the value 
of the invariant. This leads to straightforward generalizations of Proposi- 
tion 1. Furthermore, the reversibility properties RI -R8  are obviously inde- 
pendent of dimension. On the other hand, the dynamical structure for the 
mappings of Proposition 26 with n >/4 seems to be rather "poor," at least 
w.r.t, periodic orbits and bifurcation with the value of the invariant as a 
parameter. The Fibonacci trace map (where n = 3) is an interesting excep- 
tion, but in general one would expect more complicated invariants, e.g., 
rational functions, for reversible systems with more internal structure. 
Nevertheless, a closer investigation is in progress and we postpone further 
details. 

8. C O N C L U D I N G  R E M A R K S  

In this paper, we have studied trace maps derived from invertible two- 
letter substitution rules with focus on dynamical properties; compare also 
ref. 9. The key example was the well-known Fibonacci mapping. Many of 
its properties extend to the more general class of Nielsen trace maps which 
are 3D volume-preserving dynamical systems with one constant of motion. 
In suitable coordinates, this constant of motion is the Fricke character [ of 
(13) for the entire class. We have given some dynamical consequences of 
the invariance of i due to (local) conjugacies to 2D conservative mappings: 
the existence of curves of periodic orbits and the expectation of 2D area- 
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preserving period-doubling exponents. Furthermore, we have analyzed one 
level set of ~f on which the motion is explicitly solvable and pseudo-Anosov. 
It turns out that trace maps provide simple but interesting examples of 
such systems. It might be worth mentioning that this establishes a link 
between the theory of free groups and their automorphisms and the 
classification of automorphisms of orientable, compact surfaces--both 
being greatly influenced by Nielsen. 

All Nielsen trace maps have the symmetry property of commuting 
with the group X of Proposition 2, which links periodic orbits and their 
linearizations. Furthermore, a large subclass of them is reversible, which 
facilitates the location of (symmetric) periodic orbits and has many 
dynamical consequences. 

In Section 6, we asked how general is the presence of reversibility (and 
its generalizations) in Nielsen trace maps, and showed that reversibility 
with respect to polynomial reversing symmetries is answered by rever- 
sibility in the class of matrices PGI(2, 7/). The latter problem is fully solved 
in ref. 42, but the sufficient conditions given in Section 6 already indicate 
why reversibility is so prevalent in many trace map examples. We believe 
that typically a reversing symmetry of a reversible Nielsen trace map 
preserves the Fricke invariant itself, so that Nielsen trace maps provide 
many examples of a one-parameter family of reversible dynamical systems 
on 2D manifolds where the dynamics on one manifold is solvable. 

In Section 6, we were able to generalize many of the dynamical 
properties of the Fibonacci trace map to all Nielsen trace maps. A unifying 
feature of these results is the importance of the substitution matrix RF in 
the dynamics of a Nielsen trace map F. This GI(2, 7/) matrix controls the 
way F commutes with X (Proposition 15), it decides whether F is reversible 
w.r.t, a large class of reversing symmetries [Propositions 17 and 18 and 
Eq. (69)], and it controls the dynamics on ,,a'~ (Proposition 14). In 
particular, for hyperbolic RE, it gives the pseudo-Anosov system on J/~.  

Finally, in Section 7, we have given some ways to construct nD 
mappings which are reversible and have an invariant of motion. For n > 3, 
they can be seen as one possible generalization of the trace map dynamical 
systems. 

Let us now close with remarks on possible further developments, some 
of which we are currently investigating. 

(1) As we have remarked at various stages, many aspects of the 
dynamics of Nielsen trace maps in the real regime carry over immediately 
to the complex regime. Thus, they provide an interesting example of a 
one-parameter family of mappings on 2D complex manifolds. 

(2) There are of course non-Nielsen trace maps which do not 
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preserve the Fricke character [ but do preserve the surface Jr '  o, where again 
solvability and pseudo-Anosov structure come into play. Some examples 
also have another constant of motion different from the Fricke invariant, ~) 
but are dissipative 3D mappings. In such examples, period doubling would 
be expected with the 2D dissipative scalings. 

(3) Finally, as mentioned at the very beginning of this article, the 
trace maps are just a reduced dynamical system derived from a higher- 
dimensional matrix dynamical system. Studies of the latter should reveal a 
more complete picture of the dynamical features and their links to the 
underlying physical problem; compare ref. 10 and references therein. 

APPENDIX.  LOCAL EQUIVALENCE BETWEEN 3D M A P P I N G S  
W I T H  AN I N V A R I A N T  A N D  O N E - P A R A M E T E R  2D M A P P I N G S  

In this Appendix, we adapt and highlight a result from the theory of 
diffeomorphisms on manifolds to the dynamical situation suggested by the 
trace maps. Specifically, we show that there is a local transformation that 
takes a 3D mapping that possesses an invariant I to a one-parameter 2D 
mapping, the parameter being the value of the invariant on the nearby level 
sets. This conjugacy helps to explain many of the properties of such 3D 
mappings. 

Proposition A.1. Let L: R 3 --* R 3 be a diffeomorphism given by 

(i) L: ~-~lg(x, y , z ) l  (A.1) 

\h(x,  y, z ) /  

with a continuously differentiable invariant I=I (x , y , z )  such that 
I (Lx) = l(x), x = (x, y, z). Assume: (i) there exists an open set V c  R a such 
that at least one component of VI  is nonzero in V; and (ii) there is an open 
set W c  V and a ko~> l such that L*Wc V for O<k~<k0.  Then, locally in 
W, L is equivalent to a one-parameter 2D mapping, the parameter being 
the value/~ o f / o n  the level sets ~r := { x e R 3 l l ( x ) = / ~ }  that foliate W. 

Proof. From Assumption (i), at least one of {c3l/Ox, OI/Oy, OI/Oz} is 
nonzero in V, which implies that the equation l(x, y, z) = # locally has a 
unique inverse when solved, correspondingly, for one of {x, y, z}. Assump- 
tion (ii) then implies that for each point in W, the motion of L is restricted 
to V for some finite number of iterations (at least). For illustrative 
purposes, suppose that 3I/c3z~0 in V, whence I(x, y, z ) = #  can be solved 
locally in a unique way for z with (x, y, z)~ V via z=J(x,  y, I~). For x e  W 
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we can then define the transformed local mapping M by the following 
diagram: 

(x, y, z) L ' ( x ' , y , z ' )  

(x, y, Ix) ' M (x', y ' ,  #') 

where primes denote the image of a point and 

P: 

(A.2) 

Consequently M = P o L o P -  ~ has the form 

": '+t g<x'y'J`'<'y'"''j/x = tG(x'/' /x) 7 (A.4) 

The domain of M from the above conjugacy diagram (A.2) is 
P(W) c P(V), which defines a domain interval for/t. The nontrivial part of 
M is the one-parameter 2D mapping 

T: \ G ( x ,  y, # )J  

We concentrate on using Proposition A.1 in the vicinity of a point 
Po = (Xo, Yo, z0) belonging to a j-cycle of a trace map F with invariant I 
and I(po)=/zo- We take L = F  j, so that Po is a fixed point of L. If 
VI(po) #0 ,  then because VI is continuous, Assumption (i) is satisfied and 
there exists an open set V~ Po. Also, by continuity of L at Po, there always 
exists, for any finite ko, a W~ Po with W c  V that satisfies Assumption (ii). 
Application of Proposition A1 in this case leads to Proposition 1 of 
Section 3. The results of the latter Proposition are a consequence of the 
conjugacy of L to a two-dimensional map like T of (A.5), and the use of 
the (local) theory of 2D mappings (see, for example, Chapter 2 of ref. 12 
and references therein) to get implications on L. Because of the conjugacy, 
fixed points and periodic orbits of T, and hence M, are fixed points and 
periodic orbits of L and vice versa, and the eigenvalue spectra of the 
corresponding cycles of M and L are the same. In particular, the trivial 
third dimension of M gives #' = p and contributes an eigenvalue { + 1 } to 
its linearization. Otherwise, the remaining nontrivial part of M is 2D, like 

(i)(x) (i)(x) y , p - l :  ~ y (A,3) 

# =  I(x,  y, z z = J ( x ,  y, IX 
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T above. The continued existence of a fixed point (Xo(~o), Yo(#o)) of a one- 
parameter 2D mapping like T in a range of parameter ~ around/~o and its 
isolation from other fixed points (k-cycles) are guaranteed by the implicit 
function theorem if dT(xo(llo), yo(/ao)) does not have an eigenvalue equal 
to + l (a kth root of unity). Via the conjugacy (A.2), this translates to the 
existence of curves of fixed points of L (or j-periodic points of F) and the 
nonintersection of these curves with those of other periods. Note that for 
2D mappings like T, possession of an eigenvalue of dT(xo(#o), yo(/lo)) 
which is an nth root of unity is equivalent to 

tr dT"(Xo(Ito), Yo(#o)) = 1 + det dT"(Xo(Po), yo(/Zo)) 

Again from the conjugacy, this translates to 

tr dL"(Xo(ito), yo(/to), Zo(/ao)) = 2 + det dL"(Xo(#o), Yo(#o), Zo(#o)) 
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NOTE A D D E D  IN P R O O F  

In Props. 23 and 24 of Section 6, we consider reversing symmetries G 
of trace maps F that satisfy properties [HI  ] to l-H3]. The essential part of 
these properties is that G preserves the foliation of I~ 3 by the surfaces 
{J~,}, because the rest of [ H I ]  to [H3]  effectively follows from this. We 
might ask what would happen to the dynamics of F if G did not preserve 
this foliation. In this case, {.#~,} and {G.~,} would provide two different 
foliations of some region of ~3 by 2D surfaces invariant under F. The inter- 
section of these two invariant foliations would typically give a foliation of 
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the region by I D F-invariant curves. As a consequence, the dynamics of the 
reversible trace map F would be further restricted on a given level set of the 
Fricke character to lie on these dense families of curves. This restriction 
would appear to be atypical behaviour in general, as it implies the existence 
of a second constant of the motion apart from the Fricke character, which 
lends support to our assumed properties [ H I ]  to [-H3]. 
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